有理系数线性抛物方程的数值解

Q3 Mathematics
M. Nakashima
{"title":"有理系数线性抛物方程的数值解","authors":"M. Nakashima","doi":"10.5539/jmr.v15n1p1","DOIUrl":null,"url":null,"abstract":"In this paper, we present explicit scheme for solving rational coefficient (which depends only on space variable) parabolic equation. The explicit scheme is required some restriction on step size ratio k/h^2, →0 in stability, where k and h are step sizes for space and time respectively. In this paper, we will present the explicit scheme is sable without restriction on the step size ratio k/h^2. We also show the scheme converge to true solution under some conditions on coefficient.","PeriodicalId":38619,"journal":{"name":"International Journal of Mathematics in Operational Research","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Solution of Linear Parabolic Equation With Rational Coefficients\",\"authors\":\"M. Nakashima\",\"doi\":\"10.5539/jmr.v15n1p1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present explicit scheme for solving rational coefficient (which depends only on space variable) parabolic equation. The explicit scheme is required some restriction on step size ratio k/h^2, →0 in stability, where k and h are step sizes for space and time respectively. In this paper, we will present the explicit scheme is sable without restriction on the step size ratio k/h^2. We also show the scheme converge to true solution under some conditions on coefficient.\",\"PeriodicalId\":38619,\"journal\":{\"name\":\"International Journal of Mathematics in Operational Research\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematics in Operational Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5539/jmr.v15n1p1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics in Operational Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/jmr.v15n1p1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了求解有理系数(仅依赖于空间变量)抛物方程的显式格式。显式方案需要对步长比k/h^2有一定的限制,在稳定性上→0,其中k和h分别是空间和时间的步长。本文将给出不受步长比k/h^2限制的显式格式。在一定的系数条件下,证明了该格式收敛于真解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Solution of Linear Parabolic Equation With Rational Coefficients
In this paper, we present explicit scheme for solving rational coefficient (which depends only on space variable) parabolic equation. The explicit scheme is required some restriction on step size ratio k/h^2, →0 in stability, where k and h are step sizes for space and time respectively. In this paper, we will present the explicit scheme is sable without restriction on the step size ratio k/h^2. We also show the scheme converge to true solution under some conditions on coefficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Mathematics in Operational Research
International Journal of Mathematics in Operational Research Decision Sciences-Decision Sciences (all)
CiteScore
2.10
自引率
0.00%
发文量
44
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信