二维Ising模型居里点计算的神经网络方法

IF 0.4 Q4 MATHEMATICS
Олег Владимирович Король, Константин Валентинович Нефедев, Виталий Юрьевич Капитан, A. Korol, Konstantin V. Nevedev, V. Kapitan
{"title":"二维Ising模型居里点计算的神经网络方法","authors":"Олег Владимирович Король, Константин Валентинович Нефедев, Виталий Юрьевич Капитан, A. Korol, Konstantin V. Nevedev, V. Kapitan","doi":"10.25205/2541-9447-2022-17-2-5-15","DOIUrl":null,"url":null,"abstract":"The authors describe a method for determining the critical point of a second order phase transitions using a convolutional neural network based on the Ising model on a square lattice. Data for training and analysis were obtained using Monte Carlo simulations. The neural network was trained on the data corresponding to the low-temperature phase, that is a ferromagnetic one and high-temperature phase, that is a paramagnetic one, respectively. After training, the neural network analyzed input data from the entire temperature range: from 0.1 to 5.0 (in dimensionless units J) and determined the Curie point Tc.","PeriodicalId":43965,"journal":{"name":"Journal of Siberian Federal University-Mathematics & Physics","volume":"106 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural Network Method for Calculation of the Curie Point of the Two-Dimensional Ising Model\",\"authors\":\"Олег Владимирович Король, Константин Валентинович Нефедев, Виталий Юрьевич Капитан, A. Korol, Konstantin V. Nevedev, V. Kapitan\",\"doi\":\"10.25205/2541-9447-2022-17-2-5-15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors describe a method for determining the critical point of a second order phase transitions using a convolutional neural network based on the Ising model on a square lattice. Data for training and analysis were obtained using Monte Carlo simulations. The neural network was trained on the data corresponding to the low-temperature phase, that is a ferromagnetic one and high-temperature phase, that is a paramagnetic one, respectively. After training, the neural network analyzed input data from the entire temperature range: from 0.1 to 5.0 (in dimensionless units J) and determined the Curie point Tc.\",\"PeriodicalId\":43965,\"journal\":{\"name\":\"Journal of Siberian Federal University-Mathematics & Physics\",\"volume\":\"106 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Siberian Federal University-Mathematics & Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25205/2541-9447-2022-17-2-5-15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Siberian Federal University-Mathematics & Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25205/2541-9447-2022-17-2-5-15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

作者描述了一种利用基于方形晶格上的Ising模型的卷积神经网络确定二阶相变临界点的方法。使用蒙特卡罗模拟获得训练和分析数据。神经网络分别在低温相(铁磁相)和高温相(顺磁相)对应的数据上进行训练。训练后,神经网络分析整个温度范围内的输入数据:从0.1到5.0(以无因次单位J),并确定居里点Tc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Network Method for Calculation of the Curie Point of the Two-Dimensional Ising Model
The authors describe a method for determining the critical point of a second order phase transitions using a convolutional neural network based on the Ising model on a square lattice. Data for training and analysis were obtained using Monte Carlo simulations. The neural network was trained on the data corresponding to the low-temperature phase, that is a ferromagnetic one and high-temperature phase, that is a paramagnetic one, respectively. After training, the neural network analyzed input data from the entire temperature range: from 0.1 to 5.0 (in dimensionless units J) and determined the Curie point Tc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
26
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信