环与场的共轭,代数元与极小多项式

IF 1 Q1 MATHEMATICS
Christoph Schwarzweller
{"title":"环与场的共轭,代数元与极小多项式","authors":"Christoph Schwarzweller","doi":"10.2478/forma-2020-0022","DOIUrl":null,"url":null,"abstract":"Summary In [6], [7] we presented a formalization of Kronecker’s construction of a field extension of a field F in which a given polynomial p ∈ F [X]\\F has a root [4], [5], [3]. As a consequence for every field F and every polynomial there exists a field extension E of F in which p splits into linear factors. It is well-known that one gets the smallest such field extension – the splitting field of p – by adjoining the roots of p to F. In this article we start the Mizar formalization [1], [2] towards splitting fields: we define ring and field adjunctions, algebraic elements and minimal polynomials and prove a number of facts necessary to develop the theory of splitting fields, in particular that for an algebraic element a over F a basis of the vector space F (a) over F is given by a0, . . ., an−1, where n is the degree of the minimal polynomial of a over F .","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Ring and Field Adjunctions, Algebraic Elements and Minimal Polynomials\",\"authors\":\"Christoph Schwarzweller\",\"doi\":\"10.2478/forma-2020-0022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary In [6], [7] we presented a formalization of Kronecker’s construction of a field extension of a field F in which a given polynomial p ∈ F [X]\\\\F has a root [4], [5], [3]. As a consequence for every field F and every polynomial there exists a field extension E of F in which p splits into linear factors. It is well-known that one gets the smallest such field extension – the splitting field of p – by adjoining the roots of p to F. In this article we start the Mizar formalization [1], [2] towards splitting fields: we define ring and field adjunctions, algebraic elements and minimal polynomials and prove a number of facts necessary to develop the theory of splitting fields, in particular that for an algebraic element a over F a basis of the vector space F (a) over F is given by a0, . . ., an−1, where n is the degree of the minimal polynomial of a over F .\",\"PeriodicalId\":42667,\"journal\":{\"name\":\"Formalized Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Formalized Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/forma-2020-0022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formalized Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/forma-2020-0022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

在[6],[7]中,我们给出了域F的域扩展的Kronecker构造的形式化,其中给定多项式p∈F [X]\F有一个根[4],[5],[3]。因此,对于每一个域F和每一个多项式,都存在一个F的域扩展E,其中p分裂成线性因子。众所周知,通过将p的根与f相邻,可以得到最小的这样的域扩展——p的分裂域。本文开始对分裂域进行Mizar形式化[1],[2]:我们定义了环和场的共轭、代数元素和最小多项式,并证明了发展分裂场理论所必需的一些事实,特别是对于一个代数元素a / F,向量空间F (a) / F的一组基由a0,…,an - 1给出,其中n是a / F的最小多项式的次。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ring and Field Adjunctions, Algebraic Elements and Minimal Polynomials
Summary In [6], [7] we presented a formalization of Kronecker’s construction of a field extension of a field F in which a given polynomial p ∈ F [X]\F has a root [4], [5], [3]. As a consequence for every field F and every polynomial there exists a field extension E of F in which p splits into linear factors. It is well-known that one gets the smallest such field extension – the splitting field of p – by adjoining the roots of p to F. In this article we start the Mizar formalization [1], [2] towards splitting fields: we define ring and field adjunctions, algebraic elements and minimal polynomials and prove a number of facts necessary to develop the theory of splitting fields, in particular that for an algebraic element a over F a basis of the vector space F (a) over F is given by a0, . . ., an−1, where n is the degree of the minimal polynomial of a over F .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Formalized Mathematics
Formalized Mathematics MATHEMATICS-
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊介绍: Formalized Mathematics is to be issued quarterly and publishes papers which are abstracts of Mizar articles contributed to the Mizar Mathematical Library (MML) - the basis of a knowledge management system for mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信