基于天气的风力发电预报机器学习技术

A. Dolara, A. Gandelli, F. Grimaccia, S. Leva, M. Mussetta
{"title":"基于天气的风力发电预报机器学习技术","authors":"A. Dolara, A. Gandelli, F. Grimaccia, S. Leva, M. Mussetta","doi":"10.1109/ICRERA.2017.8191267","DOIUrl":null,"url":null,"abstract":"This paper presents the development of forecast models for a wind farm producibility with a 24 hours horizon. The aim is to obtain accurate wind power predictions by using feedforward artificial neural networks. In particular, different forecasting models are developed and for each of them the best architecture is researched by means of sensitivity analysis, modifying the main parameters of the artificial neural network. The results obtained are compared with the forecasts provided by numerical weather prediction models (NWP).","PeriodicalId":6535,"journal":{"name":"2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA)","volume":"32 1","pages":"206-209"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Weather-based machine learning technique for Day-Ahead wind power forecasting\",\"authors\":\"A. Dolara, A. Gandelli, F. Grimaccia, S. Leva, M. Mussetta\",\"doi\":\"10.1109/ICRERA.2017.8191267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the development of forecast models for a wind farm producibility with a 24 hours horizon. The aim is to obtain accurate wind power predictions by using feedforward artificial neural networks. In particular, different forecasting models are developed and for each of them the best architecture is researched by means of sensitivity analysis, modifying the main parameters of the artificial neural network. The results obtained are compared with the forecasts provided by numerical weather prediction models (NWP).\",\"PeriodicalId\":6535,\"journal\":{\"name\":\"2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA)\",\"volume\":\"32 1\",\"pages\":\"206-209\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRERA.2017.8191267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRERA.2017.8191267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

本文介绍了24小时视界风电场发电能力预报模型的发展。目的是通过前馈人工神经网络获得准确的风力预测。特别地,建立了不同的预测模型,并通过灵敏度分析和修改人工神经网络的主要参数,研究了每种预测模型的最佳结构。所得结果与数值天气预报模式(NWP)提供的预报结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weather-based machine learning technique for Day-Ahead wind power forecasting
This paper presents the development of forecast models for a wind farm producibility with a 24 hours horizon. The aim is to obtain accurate wind power predictions by using feedforward artificial neural networks. In particular, different forecasting models are developed and for each of them the best architecture is researched by means of sensitivity analysis, modifying the main parameters of the artificial neural network. The results obtained are compared with the forecasts provided by numerical weather prediction models (NWP).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信