变形配准中差分测度的通用预处理方案

D. Zikic, Maximilian Baust, A. Kamen, Nassir Navab
{"title":"变形配准中差分测度的通用预处理方案","authors":"D. Zikic, Maximilian Baust, A. Kamen, Nassir Navab","doi":"10.1109/ICCV.2011.6126224","DOIUrl":null,"url":null,"abstract":"We present a preconditioning scheme for improving the efficiency of optimization of arbitrary difference measures in deformable registration problems. This is of particular interest for high-dimensional registration problems with statistical difference measures such as MI, and the demons method, since in these cases the range of applicable optimization methods is limited. The proposed scheme is simple and computationally efficient: It performs an approximate normalization of the point-wise vectors of the difference gradient to unit length. The major contribution of this work is a theoretical analysis which demonstrates the improvement of the condition by our approach, which is furthermore shown to be an approximation to the optimal case for the analyzed model. Our scheme improves the convergence speed while adding only negligible computational cost, thus resulting in shorter effective runtimes. The theoretical findings are confirmed by experiments on 3D brain data.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":"204 1","pages":"49-56"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"A general preconditioning scheme for difference measures in deformable registration\",\"authors\":\"D. Zikic, Maximilian Baust, A. Kamen, Nassir Navab\",\"doi\":\"10.1109/ICCV.2011.6126224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a preconditioning scheme for improving the efficiency of optimization of arbitrary difference measures in deformable registration problems. This is of particular interest for high-dimensional registration problems with statistical difference measures such as MI, and the demons method, since in these cases the range of applicable optimization methods is limited. The proposed scheme is simple and computationally efficient: It performs an approximate normalization of the point-wise vectors of the difference gradient to unit length. The major contribution of this work is a theoretical analysis which demonstrates the improvement of the condition by our approach, which is furthermore shown to be an approximation to the optimal case for the analyzed model. Our scheme improves the convergence speed while adding only negligible computational cost, thus resulting in shorter effective runtimes. The theoretical findings are confirmed by experiments on 3D brain data.\",\"PeriodicalId\":6391,\"journal\":{\"name\":\"2011 International Conference on Computer Vision\",\"volume\":\"204 1\",\"pages\":\"49-56\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2011.6126224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2011.6126224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

为了提高变形配准问题中任意差分测度的优化效率,提出了一种预处理方案。这对于具有统计差异度量(如MI)和demons方法的高维配准问题特别有意义,因为在这些情况下,适用的优化方法的范围是有限的。所提出的方案简单且计算效率高:它对差梯度的逐点向量进行近似归一化到单位长度。这项工作的主要贡献是理论分析,它证明了我们的方法对条件的改善,进一步证明了对所分析模型的最佳情况的近似。我们的方案提高了收敛速度,同时只增加了微不足道的计算成本,从而缩短了有效运行时间。这一理论发现得到了三维大脑数据实验的证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A general preconditioning scheme for difference measures in deformable registration
We present a preconditioning scheme for improving the efficiency of optimization of arbitrary difference measures in deformable registration problems. This is of particular interest for high-dimensional registration problems with statistical difference measures such as MI, and the demons method, since in these cases the range of applicable optimization methods is limited. The proposed scheme is simple and computationally efficient: It performs an approximate normalization of the point-wise vectors of the difference gradient to unit length. The major contribution of this work is a theoretical analysis which demonstrates the improvement of the condition by our approach, which is furthermore shown to be an approximation to the optimal case for the analyzed model. Our scheme improves the convergence speed while adding only negligible computational cost, thus resulting in shorter effective runtimes. The theoretical findings are confirmed by experiments on 3D brain data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信