论适当度量空间中的声音范围

IF 0.3 Q4 MATHEMATICS
S. V. Goncharov
{"title":"论适当度量空间中的声音范围","authors":"S. V. Goncharov","doi":"10.12697/ACUTM.2020.24.14","DOIUrl":null,"url":null,"abstract":"We consider the sound ranging, or source localization, problem -- find the source-point from the moments when the wave-sphere of linearly, with time, increasing radius reaches the sensor-points -- in proper metric spaces (any closed ball is compact) and, in particular, in the finite-dimensional normed spaces. We approximate the solution to arbitrary precision by the iterative process with the stopping criterion. Implementation of the proposed method in Julia language is included. ","PeriodicalId":42426,"journal":{"name":"Acta et Commentationes Universitatis Tartuensis de Mathematica","volume":"49 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2018-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On sound ranging in proper metric spaces\",\"authors\":\"S. V. Goncharov\",\"doi\":\"10.12697/ACUTM.2020.24.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the sound ranging, or source localization, problem -- find the source-point from the moments when the wave-sphere of linearly, with time, increasing radius reaches the sensor-points -- in proper metric spaces (any closed ball is compact) and, in particular, in the finite-dimensional normed spaces. We approximate the solution to arbitrary precision by the iterative process with the stopping criterion. Implementation of the proposed method in Julia language is included. \",\"PeriodicalId\":42426,\"journal\":{\"name\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2018-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12697/ACUTM.2020.24.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et Commentationes Universitatis Tartuensis de Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12697/ACUTM.2020.24.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

我们考虑声音测距或声源定位问题——在适当的度量空间(任何封闭的球都是紧致的),特别是在有限维赋范空间中,从随时间线性增加半径的波球到达传感器点的时刻找到声源点。我们用停止准则通过迭代过程逼近任意精度的解。给出了该方法在Julia语言中的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On sound ranging in proper metric spaces
We consider the sound ranging, or source localization, problem -- find the source-point from the moments when the wave-sphere of linearly, with time, increasing radius reaches the sensor-points -- in proper metric spaces (any closed ball is compact) and, in particular, in the finite-dimensional normed spaces. We approximate the solution to arbitrary precision by the iterative process with the stopping criterion. Implementation of the proposed method in Julia language is included. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
33.30%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信