非相对论极限区Klein-Gordon方程的高阶渐近分析

Asymptot. Anal. Pub Date : 2017-01-01 DOI:10.3233/ASY-171414
Yong Lu, Zhifei Zhang
{"title":"非相对论极限区Klein-Gordon方程的高阶渐近分析","authors":"Yong Lu, Zhifei Zhang","doi":"10.3233/ASY-171414","DOIUrl":null,"url":null,"abstract":"In this paper, we study the asymptotic behavior of nonlinear Klein-Gordon equations in the non-relativistic limit regime. By employing the techniques in geometric optics, we show that the Klein-Gordon equation can be approximated by nonlinear Schrödinger equations. In particular, we show error estimates which are of the same order as the initial error. Our result gives a mathematical verification for some numerical results obtained in [1, 2], and offers a rigorous justification for a technical assumption in the numerical studies [1].","PeriodicalId":8603,"journal":{"name":"Asymptot. Anal.","volume":"197 1","pages":"157-175"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Higher order asymptotic analysis of the Klein-Gordon equation in the non-relativistic limit regime\",\"authors\":\"Yong Lu, Zhifei Zhang\",\"doi\":\"10.3233/ASY-171414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the asymptotic behavior of nonlinear Klein-Gordon equations in the non-relativistic limit regime. By employing the techniques in geometric optics, we show that the Klein-Gordon equation can be approximated by nonlinear Schrödinger equations. In particular, we show error estimates which are of the same order as the initial error. Our result gives a mathematical verification for some numerical results obtained in [1, 2], and offers a rigorous justification for a technical assumption in the numerical studies [1].\",\"PeriodicalId\":8603,\"journal\":{\"name\":\"Asymptot. Anal.\",\"volume\":\"197 1\",\"pages\":\"157-175\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptot. Anal.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/ASY-171414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptot. Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ASY-171414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了非线性Klein-Gordon方程在非相对论极限域中的渐近行为。利用几何光学中的技术,我们证明了Klein-Gordon方程可以用非线性Schrödinger方程近似。特别是,我们显示了与初始误差具有相同阶数的误差估计。我们的结果对[1,2]中得到的一些数值结果进行了数学验证,并为数值研究中的一个技术假设提供了严格的证明[10]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Higher order asymptotic analysis of the Klein-Gordon equation in the non-relativistic limit regime
In this paper, we study the asymptotic behavior of nonlinear Klein-Gordon equations in the non-relativistic limit regime. By employing the techniques in geometric optics, we show that the Klein-Gordon equation can be approximated by nonlinear Schrödinger equations. In particular, we show error estimates which are of the same order as the initial error. Our result gives a mathematical verification for some numerical results obtained in [1, 2], and offers a rigorous justification for a technical assumption in the numerical studies [1].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信