空间数据流中的矩形高效聚合

S. Tirthapura, David P. Woodruff
{"title":"空间数据流中的矩形高效聚合","authors":"S. Tirthapura, David P. Woodruff","doi":"10.1145/2213556.2213595","DOIUrl":null,"url":null,"abstract":"We consider the estimation of aggregates over a data stream of multidimensional axis-aligned rectangles. Rectangles are a basic primitive object in spatial databases, and efficient aggregation of rectangles is a fundamental task. The data stream model has emerged as a de facto model for processing massive databases in which the data resides in external memory or the cloud and is streamed through main memory. For a point <i>p</i>, let <i>n(p)</i> denote the sum of the weights of all rectangles in the stream that contain <i>p</i>. We give near-optimal solutions for basic problems, including (1) the <i>k</i>-th frequency moment <i>F<sub>k</sub></i> = ∑ <sub>points <i>p</i></sub>|<i>n(p)</i>|<sup><i>k</i></sup>, (2)~the counting version of stabbing queries, which seeks an estimate of <i>n(p)</i> given <i>p</i>, and (3) identification of heavy-hitters, i.e., points <i>p</i> for which <i>n(p)</i> is large. An important special case of <i>F<sub>k</sub></i> is <i>F<sub>0</sub></i>, which corresponds to the volume of the union of the rectangles. This is a celebrated problem in computational geometry known as \"Klee's measure problem\", and our work yields the first solution in the streaming model for dimensions greater than one.","PeriodicalId":92118,"journal":{"name":"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems","volume":"115 1","pages":"283-294"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Rectangle-efficient aggregation in spatial data streams\",\"authors\":\"S. Tirthapura, David P. Woodruff\",\"doi\":\"10.1145/2213556.2213595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the estimation of aggregates over a data stream of multidimensional axis-aligned rectangles. Rectangles are a basic primitive object in spatial databases, and efficient aggregation of rectangles is a fundamental task. The data stream model has emerged as a de facto model for processing massive databases in which the data resides in external memory or the cloud and is streamed through main memory. For a point <i>p</i>, let <i>n(p)</i> denote the sum of the weights of all rectangles in the stream that contain <i>p</i>. We give near-optimal solutions for basic problems, including (1) the <i>k</i>-th frequency moment <i>F<sub>k</sub></i> = ∑ <sub>points <i>p</i></sub>|<i>n(p)</i>|<sup><i>k</i></sup>, (2)~the counting version of stabbing queries, which seeks an estimate of <i>n(p)</i> given <i>p</i>, and (3) identification of heavy-hitters, i.e., points <i>p</i> for which <i>n(p)</i> is large. An important special case of <i>F<sub>k</sub></i> is <i>F<sub>0</sub></i>, which corresponds to the volume of the union of the rectangles. This is a celebrated problem in computational geometry known as \\\"Klee's measure problem\\\", and our work yields the first solution in the streaming model for dimensions greater than one.\",\"PeriodicalId\":92118,\"journal\":{\"name\":\"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems\",\"volume\":\"115 1\",\"pages\":\"283-294\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2213556.2213595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2213556.2213595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

我们考虑对多维轴对齐矩形数据流的聚合估计。矩形是空间数据库中一种基本的原语对象,矩形的高效聚合是空间数据库的基本任务。数据流模型已经成为处理海量数据库的实际模型,其中数据驻留在外部存储器或云中,并通过主存储器进行流处理。对于点p,设n(p)表示流中包含p的所有矩形的权重之和。我们给出了基本问题的近最优解,包括(1)第k次频率矩Fk =∑点p|n(p)|k,(2)~刺入查询的计数版本,它寻求给定p的n(p)的估计,以及(3)识别重磅点,即n(p)较大的点p。Fk的一个重要特例是F0,它对应于矩形并集的体积。这是计算几何中的一个著名问题,被称为“Klee测量问题”,我们的工作产生了大于1维的流模型中的第一个解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rectangle-efficient aggregation in spatial data streams
We consider the estimation of aggregates over a data stream of multidimensional axis-aligned rectangles. Rectangles are a basic primitive object in spatial databases, and efficient aggregation of rectangles is a fundamental task. The data stream model has emerged as a de facto model for processing massive databases in which the data resides in external memory or the cloud and is streamed through main memory. For a point p, let n(p) denote the sum of the weights of all rectangles in the stream that contain p. We give near-optimal solutions for basic problems, including (1) the k-th frequency moment Fk = ∑ points p|n(p)|k, (2)~the counting version of stabbing queries, which seeks an estimate of n(p) given p, and (3) identification of heavy-hitters, i.e., points p for which n(p) is large. An important special case of Fk is F0, which corresponds to the volume of the union of the rectangles. This is a celebrated problem in computational geometry known as "Klee's measure problem", and our work yields the first solution in the streaming model for dimensions greater than one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信