Bogdan Mazoure, T. Doan, Tianyu Li, V. Makarenkov, Joelle Pineau, Doina Precup, Guillaume Rabusseau
{"title":"强化学习策略的低秩表示","authors":"Bogdan Mazoure, T. Doan, Tianyu Li, V. Makarenkov, Joelle Pineau, Doina Precup, Guillaume Rabusseau","doi":"10.1613/jair.1.13854","DOIUrl":null,"url":null,"abstract":"We propose a general framework for policy representation for reinforcement learning tasks. This framework involves finding a low-dimensional embedding of the policy on a reproducing kernel Hilbert space (RKHS). The usage of RKHS based methods allows us to derive strong theoretical guarantees on the expected return of the reconstructed policy. Such guarantees are typically lacking in black-box models, but are very desirable in tasks requiring stability and convergence guarantees. We conduct several experiments on classic RL domains. The results confirm that the policies can be robustly represented in a low-dimensional space while the embedded policy incurs almost no decrease in returns.","PeriodicalId":54877,"journal":{"name":"Journal of Artificial Intelligence Research","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-Rank Representation of Reinforcement Learning Policies\",\"authors\":\"Bogdan Mazoure, T. Doan, Tianyu Li, V. Makarenkov, Joelle Pineau, Doina Precup, Guillaume Rabusseau\",\"doi\":\"10.1613/jair.1.13854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a general framework for policy representation for reinforcement learning tasks. This framework involves finding a low-dimensional embedding of the policy on a reproducing kernel Hilbert space (RKHS). The usage of RKHS based methods allows us to derive strong theoretical guarantees on the expected return of the reconstructed policy. Such guarantees are typically lacking in black-box models, but are very desirable in tasks requiring stability and convergence guarantees. We conduct several experiments on classic RL domains. The results confirm that the policies can be robustly represented in a low-dimensional space while the embedded policy incurs almost no decrease in returns.\",\"PeriodicalId\":54877,\"journal\":{\"name\":\"Journal of Artificial Intelligence Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2022-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1613/jair.1.13854\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1613/jair.1.13854","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Low-Rank Representation of Reinforcement Learning Policies
We propose a general framework for policy representation for reinforcement learning tasks. This framework involves finding a low-dimensional embedding of the policy on a reproducing kernel Hilbert space (RKHS). The usage of RKHS based methods allows us to derive strong theoretical guarantees on the expected return of the reconstructed policy. Such guarantees are typically lacking in black-box models, but are very desirable in tasks requiring stability and convergence guarantees. We conduct several experiments on classic RL domains. The results confirm that the policies can be robustly represented in a low-dimensional space while the embedded policy incurs almost no decrease in returns.
期刊介绍:
JAIR(ISSN 1076 - 9757) covers all areas of artificial intelligence (AI), publishing refereed research articles, survey articles, and technical notes. Established in 1993 as one of the first electronic scientific journals, JAIR is indexed by INSPEC, Science Citation Index, and MathSciNet. JAIR reviews papers within approximately three months of submission and publishes accepted articles on the internet immediately upon receiving the final versions. JAIR articles are published for free distribution on the internet by the AI Access Foundation, and for purchase in bound volumes by AAAI Press.