稳定∞范畴k理论的局部化定理

IF 1.3 3区 数学 Q1 MATHEMATICS
F. Hebestreit, Andrea Lachmann, W. Steimle
{"title":"稳定∞范畴k理论的局部化定理","authors":"F. Hebestreit, Andrea Lachmann, W. Steimle","doi":"10.1017/prm.2023.35","DOIUrl":null,"url":null,"abstract":"We provide a fairly self-contained account of the localisation and cofinality theorems for the algebraic \n \n $\\operatorname K$\n \n \n -theory of stable \n \n $\\infty$\n \n \n -categories. It is based on a general formula for the evaluation of an additive functor on a Verdier quotient closely following work of Waldhausen. We also include a new proof of the additivity theorem of \n \n $\\operatorname K$\n \n \n -theory, strongly inspired by Ranicki's algebraic Thom construction, a short proof of the universality theorem of Blumberg, Gepner and Tabuada, and a second proof of the cofinality theorem which is based on the universal property of \n \n $\\operatorname K$\n \n \n -theory.","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"20 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The localisation theorem for the K-theory of stable ∞-categories\",\"authors\":\"F. Hebestreit, Andrea Lachmann, W. Steimle\",\"doi\":\"10.1017/prm.2023.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide a fairly self-contained account of the localisation and cofinality theorems for the algebraic \\n \\n $\\\\operatorname K$\\n \\n \\n -theory of stable \\n \\n $\\\\infty$\\n \\n \\n -categories. It is based on a general formula for the evaluation of an additive functor on a Verdier quotient closely following work of Waldhausen. We also include a new proof of the additivity theorem of \\n \\n $\\\\operatorname K$\\n \\n \\n -theory, strongly inspired by Ranicki's algebraic Thom construction, a short proof of the universality theorem of Blumberg, Gepner and Tabuada, and a second proof of the cofinality theorem which is based on the universal property of \\n \\n $\\\\operatorname K$\\n \\n \\n -theory.\",\"PeriodicalId\":54560,\"journal\":{\"name\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/prm.2023.35\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2023.35","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们提供了稳定$\infty$ -范畴的代数$\operatorname K$ -理论的一个相当完备的局域性定理和共通性定理的说明。它是基于Verdier商上加性函子求值的一般公式,与Waldhausen的工作密切相关。本文还包括了受Ranicki代数构造启发的$\operatorname K$ -theory可加性定理的一个新证明,对Blumberg、Gepner和Tabuada的通用性定理的一个简短证明,以及基于$\operatorname K$ -theory的通用性定理的第二个证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The localisation theorem for the K-theory of stable ∞-categories
We provide a fairly self-contained account of the localisation and cofinality theorems for the algebraic $\operatorname K$ -theory of stable $\infty$ -categories. It is based on a general formula for the evaluation of an additive functor on a Verdier quotient closely following work of Waldhausen. We also include a new proof of the additivity theorem of $\operatorname K$ -theory, strongly inspired by Ranicki's algebraic Thom construction, a short proof of the universality theorem of Blumberg, Gepner and Tabuada, and a second proof of the cofinality theorem which is based on the universal property of $\operatorname K$ -theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信