余维四紧黎曼叶理的基本上同调的直接和

Jiuru Zhou
{"title":"余维四紧黎曼叶理的基本上同调的直接和","authors":"Jiuru Zhou","doi":"10.4134/BKMS.B200022","DOIUrl":null,"url":null,"abstract":"We discuss the decomposition of degree two basic cohomology for codimension four taut Riemannian foliation according to the holonomy invariant transversal almost complex structure J, and show that J is C pure and full. In addition, we obtain an estimate of the dimension of basic J-anti-invariant subgroup. These are the foliated version for the corresponding results of T. Draghici et al.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct sum for basic cohomology of codimension four taut Riemannian foliation\",\"authors\":\"Jiuru Zhou\",\"doi\":\"10.4134/BKMS.B200022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss the decomposition of degree two basic cohomology for codimension four taut Riemannian foliation according to the holonomy invariant transversal almost complex structure J, and show that J is C pure and full. In addition, we obtain an estimate of the dimension of basic J-anti-invariant subgroup. These are the foliated version for the corresponding results of T. Draghici et al.\",\"PeriodicalId\":8430,\"journal\":{\"name\":\"arXiv: Differential Geometry\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4134/BKMS.B200022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4134/BKMS.B200022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

根据完整不变横切几乎复结构J,讨论了余维四张紧黎曼叶理的二阶基本上同调的分解,并证明了J是C纯满的。此外,我们还得到了基本j -反不变子群维数的估计。这些是T. Draghici等人相应结果的叶状版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direct sum for basic cohomology of codimension four taut Riemannian foliation
We discuss the decomposition of degree two basic cohomology for codimension four taut Riemannian foliation according to the holonomy invariant transversal almost complex structure J, and show that J is C pure and full. In addition, we obtain an estimate of the dimension of basic J-anti-invariant subgroup. These are the foliated version for the corresponding results of T. Draghici et al.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信