L. Hofer, Milan Krstaji'c, P'eter Juh'asz, A. L. Marchant, Robert P. Smith
{"title":"原子云检测和分割使用深度神经网络","authors":"L. Hofer, Milan Krstaji'c, P'eter Juh'asz, A. L. Marchant, Robert P. Smith","doi":"10.1088/2632-2153/abf5ee","DOIUrl":null,"url":null,"abstract":"We use a deep neural network to detect and place region-of-interest boxes around ultracold atom clouds in absorption and fluorescence images---with the ability to identify and bound multiple clouds within a single image. The neural network also outputs segmentation masks that identify the size, shape and orientation of each cloud from which we extract the clouds' Gaussian parameters. This allows 2D Gaussian fits to be reliably seeded thereby enabling fully automatic image processing.","PeriodicalId":18148,"journal":{"name":"Mach. Learn. Sci. Technol.","volume":"2 1","pages":"45008"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Atom cloud detection and segmentation using a deep neural network\",\"authors\":\"L. Hofer, Milan Krstaji'c, P'eter Juh'asz, A. L. Marchant, Robert P. Smith\",\"doi\":\"10.1088/2632-2153/abf5ee\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use a deep neural network to detect and place region-of-interest boxes around ultracold atom clouds in absorption and fluorescence images---with the ability to identify and bound multiple clouds within a single image. The neural network also outputs segmentation masks that identify the size, shape and orientation of each cloud from which we extract the clouds' Gaussian parameters. This allows 2D Gaussian fits to be reliably seeded thereby enabling fully automatic image processing.\",\"PeriodicalId\":18148,\"journal\":{\"name\":\"Mach. Learn. Sci. Technol.\",\"volume\":\"2 1\",\"pages\":\"45008\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mach. Learn. Sci. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-2153/abf5ee\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mach. Learn. Sci. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-2153/abf5ee","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Atom cloud detection and segmentation using a deep neural network
We use a deep neural network to detect and place region-of-interest boxes around ultracold atom clouds in absorption and fluorescence images---with the ability to identify and bound multiple clouds within a single image. The neural network also outputs segmentation masks that identify the size, shape and orientation of each cloud from which we extract the clouds' Gaussian parameters. This allows 2D Gaussian fits to be reliably seeded thereby enabling fully automatic image processing.