加权和的庞加莱不等式和正态逼近

S. Bobkov, G. Chistyakov, Friedrich Götze
{"title":"加权和的庞加莱不等式和正态逼近","authors":"S. Bobkov, G. Chistyakov, Friedrich Götze","doi":"10.1214/20-ejp549","DOIUrl":null,"url":null,"abstract":"Under Poincare-type conditions, upper bounds are explored for the Kolmogorov distance between the distributions of weighted sums of dependent summands and the normal law. Based on improved concentration inequalities on high-dimensional Euclidean spheres, the results extend and refine previous results to non-symmetric models.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"287 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Poincaré inequalities and normal approximation for weighted sums\",\"authors\":\"S. Bobkov, G. Chistyakov, Friedrich Götze\",\"doi\":\"10.1214/20-ejp549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Under Poincare-type conditions, upper bounds are explored for the Kolmogorov distance between the distributions of weighted sums of dependent summands and the normal law. Based on improved concentration inequalities on high-dimensional Euclidean spheres, the results extend and refine previous results to non-symmetric models.\",\"PeriodicalId\":8470,\"journal\":{\"name\":\"arXiv: Probability\",\"volume\":\"287 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/20-ejp549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/20-ejp549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在庞加莱型条件下,探讨了相关和的加权和分布与正态律之间的Kolmogorov距离的上界。基于改进的高维欧几里得球上的浓度不等式,将先前的结果扩展和细化到非对称模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Poincaré inequalities and normal approximation for weighted sums
Under Poincare-type conditions, upper bounds are explored for the Kolmogorov distance between the distributions of weighted sums of dependent summands and the normal law. Based on improved concentration inequalities on high-dimensional Euclidean spheres, the results extend and refine previous results to non-symmetric models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信