{"title":"模形式的重量$3m$和椭圆模曲面","authors":"Shouhei Ma","doi":"10.3792/PJAA.95.31","DOIUrl":null,"url":null,"abstract":"We prove that the graded ring of modular forms of weight divisible by 3 is naturally isomorphic to a certain log canonical ring of the corresponding elliptic modular surface.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modular forms of weight $3m$ and elliptic modular surfaces\",\"authors\":\"Shouhei Ma\",\"doi\":\"10.3792/PJAA.95.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the graded ring of modular forms of weight divisible by 3 is naturally isomorphic to a certain log canonical ring of the corresponding elliptic modular surface.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2015-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3792/PJAA.95.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3792/PJAA.95.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modular forms of weight $3m$ and elliptic modular surfaces
We prove that the graded ring of modular forms of weight divisible by 3 is naturally isomorphic to a certain log canonical ring of the corresponding elliptic modular surface.