{"title":"在模型预测控制算法中引入基于反馈的振动能量汇的运动柔性系统跟踪控制","authors":"M. Homaeinezhad, F. Fotoohinia","doi":"10.1177/14644193221102105","DOIUrl":null,"url":null,"abstract":"This paper proposes a new approach towards the nonlinear problem of tracking control for mobile multivariable vibrational structure featuring an Euler-Bernoulli vibrational beam. The control scheme involves obtaining interactions between flexural and rigid motions of the multivariable continuum mechanics system with actuator force limitation both regarding domain and frequency bandwidth. To this end, the boundary control inputs are selected prioritizing two tasks, satisfying actuator limitations and obtaining minimum possible tracking error. The former is employed as hard constraint in model predictive control (MPC) scheme while the latter is considered as soft constraint. The control scheme is adjusted such that when actuator limits are exceeded, the soft constraints are relaxed to maintain stability. In order to provide smooth tracking, Euler-Bernoulli transverse vibration is attenuated by incorporating Feedback Vibrational Energy Sink (FVES) method in obtaining control law. Hence, actuators are manipulated such that total vibrational energy of flexible beam is damped without using passive or conventional active dampers. The accuracy of the proposed method has been verified via FEA-based simulations.","PeriodicalId":54565,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part K-Journal of Multi-Body Dynamics","volume":"38 1","pages":"368 - 381"},"PeriodicalIF":1.9000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Tracking control of moving flexible system by incorporation of feedback-based vibrational energy sink in model predictive control algorithm\",\"authors\":\"M. Homaeinezhad, F. Fotoohinia\",\"doi\":\"10.1177/14644193221102105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new approach towards the nonlinear problem of tracking control for mobile multivariable vibrational structure featuring an Euler-Bernoulli vibrational beam. The control scheme involves obtaining interactions between flexural and rigid motions of the multivariable continuum mechanics system with actuator force limitation both regarding domain and frequency bandwidth. To this end, the boundary control inputs are selected prioritizing two tasks, satisfying actuator limitations and obtaining minimum possible tracking error. The former is employed as hard constraint in model predictive control (MPC) scheme while the latter is considered as soft constraint. The control scheme is adjusted such that when actuator limits are exceeded, the soft constraints are relaxed to maintain stability. In order to provide smooth tracking, Euler-Bernoulli transverse vibration is attenuated by incorporating Feedback Vibrational Energy Sink (FVES) method in obtaining control law. Hence, actuators are manipulated such that total vibrational energy of flexible beam is damped without using passive or conventional active dampers. The accuracy of the proposed method has been verified via FEA-based simulations.\",\"PeriodicalId\":54565,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part K-Journal of Multi-Body Dynamics\",\"volume\":\"38 1\",\"pages\":\"368 - 381\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part K-Journal of Multi-Body Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/14644193221102105\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part K-Journal of Multi-Body Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14644193221102105","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Tracking control of moving flexible system by incorporation of feedback-based vibrational energy sink in model predictive control algorithm
This paper proposes a new approach towards the nonlinear problem of tracking control for mobile multivariable vibrational structure featuring an Euler-Bernoulli vibrational beam. The control scheme involves obtaining interactions between flexural and rigid motions of the multivariable continuum mechanics system with actuator force limitation both regarding domain and frequency bandwidth. To this end, the boundary control inputs are selected prioritizing two tasks, satisfying actuator limitations and obtaining minimum possible tracking error. The former is employed as hard constraint in model predictive control (MPC) scheme while the latter is considered as soft constraint. The control scheme is adjusted such that when actuator limits are exceeded, the soft constraints are relaxed to maintain stability. In order to provide smooth tracking, Euler-Bernoulli transverse vibration is attenuated by incorporating Feedback Vibrational Energy Sink (FVES) method in obtaining control law. Hence, actuators are manipulated such that total vibrational energy of flexible beam is damped without using passive or conventional active dampers. The accuracy of the proposed method has been verified via FEA-based simulations.
期刊介绍:
The Journal of Multi-body Dynamics is a multi-disciplinary forum covering all aspects of mechanical design and dynamic analysis of multi-body systems. It is essential reading for academic and industrial research and development departments active in the mechanical design, monitoring and dynamic analysis of multi-body systems.