联合动作定位与识别的判别图形中心模型

Tian Lan, Yang Wang, Greg Mori
{"title":"联合动作定位与识别的判别图形中心模型","authors":"Tian Lan, Yang Wang, Greg Mori","doi":"10.1109/ICCV.2011.6126472","DOIUrl":null,"url":null,"abstract":"In this paper we develop an algorithm for action recognition and localization in videos. The algorithm uses a figure-centric visual word representation. Different from previous approaches it does not require reliable human detection and tracking as input. Instead, the person location is treated as a latent variable that is inferred simultaneously with action recognition. A spatial model for an action is learned in a discriminative fashion under a figure-centric representation. Temporal smoothness over video sequences is also enforced. We present results on the UCF-Sports dataset, verifying the effectiveness of our model in situations where detection and tracking of individuals is challenging.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":"27 1","pages":"2003-2010"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"246","resultStr":"{\"title\":\"Discriminative figure-centric models for joint action localization and recognition\",\"authors\":\"Tian Lan, Yang Wang, Greg Mori\",\"doi\":\"10.1109/ICCV.2011.6126472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we develop an algorithm for action recognition and localization in videos. The algorithm uses a figure-centric visual word representation. Different from previous approaches it does not require reliable human detection and tracking as input. Instead, the person location is treated as a latent variable that is inferred simultaneously with action recognition. A spatial model for an action is learned in a discriminative fashion under a figure-centric representation. Temporal smoothness over video sequences is also enforced. We present results on the UCF-Sports dataset, verifying the effectiveness of our model in situations where detection and tracking of individuals is challenging.\",\"PeriodicalId\":6391,\"journal\":{\"name\":\"2011 International Conference on Computer Vision\",\"volume\":\"27 1\",\"pages\":\"2003-2010\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"246\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2011.6126472\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2011.6126472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 246

摘要

本文提出了一种视频动作识别与定位算法。该算法使用以图形为中心的视觉单词表示。与以前的方法不同,它不需要可靠的人工检测和跟踪作为输入。相反,人的位置被视为与动作识别同时推断的潜在变量。动作的空间模型是在以图形为中心的表征下以判别方式学习的。视频序列的时间平滑性也被强制执行。我们在UCF-Sports数据集上展示了结果,验证了我们的模型在个体检测和跟踪具有挑战性的情况下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discriminative figure-centric models for joint action localization and recognition
In this paper we develop an algorithm for action recognition and localization in videos. The algorithm uses a figure-centric visual word representation. Different from previous approaches it does not require reliable human detection and tracking as input. Instead, the person location is treated as a latent variable that is inferred simultaneously with action recognition. A spatial model for an action is learned in a discriminative fashion under a figure-centric representation. Temporal smoothness over video sequences is also enforced. We present results on the UCF-Sports dataset, verifying the effectiveness of our model in situations where detection and tracking of individuals is challenging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信