{"title":"联合动作定位与识别的判别图形中心模型","authors":"Tian Lan, Yang Wang, Greg Mori","doi":"10.1109/ICCV.2011.6126472","DOIUrl":null,"url":null,"abstract":"In this paper we develop an algorithm for action recognition and localization in videos. The algorithm uses a figure-centric visual word representation. Different from previous approaches it does not require reliable human detection and tracking as input. Instead, the person location is treated as a latent variable that is inferred simultaneously with action recognition. A spatial model for an action is learned in a discriminative fashion under a figure-centric representation. Temporal smoothness over video sequences is also enforced. We present results on the UCF-Sports dataset, verifying the effectiveness of our model in situations where detection and tracking of individuals is challenging.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":"27 1","pages":"2003-2010"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"246","resultStr":"{\"title\":\"Discriminative figure-centric models for joint action localization and recognition\",\"authors\":\"Tian Lan, Yang Wang, Greg Mori\",\"doi\":\"10.1109/ICCV.2011.6126472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we develop an algorithm for action recognition and localization in videos. The algorithm uses a figure-centric visual word representation. Different from previous approaches it does not require reliable human detection and tracking as input. Instead, the person location is treated as a latent variable that is inferred simultaneously with action recognition. A spatial model for an action is learned in a discriminative fashion under a figure-centric representation. Temporal smoothness over video sequences is also enforced. We present results on the UCF-Sports dataset, verifying the effectiveness of our model in situations where detection and tracking of individuals is challenging.\",\"PeriodicalId\":6391,\"journal\":{\"name\":\"2011 International Conference on Computer Vision\",\"volume\":\"27 1\",\"pages\":\"2003-2010\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"246\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2011.6126472\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2011.6126472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Discriminative figure-centric models for joint action localization and recognition
In this paper we develop an algorithm for action recognition and localization in videos. The algorithm uses a figure-centric visual word representation. Different from previous approaches it does not require reliable human detection and tracking as input. Instead, the person location is treated as a latent variable that is inferred simultaneously with action recognition. A spatial model for an action is learned in a discriminative fashion under a figure-centric representation. Temporal smoothness over video sequences is also enforced. We present results on the UCF-Sports dataset, verifying the effectiveness of our model in situations where detection and tracking of individuals is challenging.