left-r.e关闭。集

IF 0.2
Sanjay Jain, F. Stephan, Jason Teutsch
{"title":"left-r.e关闭。集","authors":"Sanjay Jain, F. Stephan, Jason Teutsch","doi":"10.3233/COM-160054","DOIUrl":null,"url":null,"abstract":"A set is called r-closed left-r.e. iff every set r-reducible to it is also a left-r.e. set. It is shown that some but not all left-r.e. cohesive sets are many-one closed left-r.e. sets. Ascending reductions are manyone reductions via an ascending function; left-r.e. cohesive sets are also ascening closed left-r.e. sets. Furthermore, it is shown that there is a weakly 1-generic many-one closed left-r.e. set.","PeriodicalId":53933,"journal":{"name":"De Computis-Revista Espanola de Historia de la Contabilidad","volume":"103 1","pages":"218-229"},"PeriodicalIF":0.2000,"publicationDate":"2011-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Closed left-r.e. sets\",\"authors\":\"Sanjay Jain, F. Stephan, Jason Teutsch\",\"doi\":\"10.3233/COM-160054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A set is called r-closed left-r.e. iff every set r-reducible to it is also a left-r.e. set. It is shown that some but not all left-r.e. cohesive sets are many-one closed left-r.e. sets. Ascending reductions are manyone reductions via an ascending function; left-r.e. cohesive sets are also ascening closed left-r.e. sets. Furthermore, it is shown that there is a weakly 1-generic many-one closed left-r.e. set.\",\"PeriodicalId\":53933,\"journal\":{\"name\":\"De Computis-Revista Espanola de Historia de la Contabilidad\",\"volume\":\"103 1\",\"pages\":\"218-229\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2011-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"De Computis-Revista Espanola de Historia de la Contabilidad\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/COM-160054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"De Computis-Revista Espanola de Historia de la Contabilidad","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/COM-160054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

一个集合叫做r闭左r.e。如果每个集合r可约为它也是一个左r。集。结果表明,有些人(但不是全部)离开了r.e.。内聚集是一个多闭左旋集。集。升序约简是通过升序函数进行的多次约简;left-r.e。内聚集合也在上升封闭的左旋。集。进一步证明了存在一个弱1-一般多- 1闭左正则子。集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Closed left-r.e. sets
A set is called r-closed left-r.e. iff every set r-reducible to it is also a left-r.e. set. It is shown that some but not all left-r.e. cohesive sets are many-one closed left-r.e. sets. Ascending reductions are manyone reductions via an ascending function; left-r.e. cohesive sets are also ascening closed left-r.e. sets. Furthermore, it is shown that there is a weakly 1-generic many-one closed left-r.e. set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
50.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信