{"title":"关于大差分集的若干乘法性质","authors":"I. Shkredov","doi":"10.4153/s0008414x23000500","DOIUrl":null,"url":null,"abstract":"In our paper we study multiplicative properties of difference sets $A-A$ for large sets $A \\subseteq \\mathbb{Z}/q\\mathbb{Z}$ in the case of composite $q$. We obtain a quantitative version of a result of A. Fish about the structure of the product sets $(A-A)(A-A)$. Also, we show that the multiplicative covering number of any difference set is always small.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On some multiplicative properties of large difference sets\",\"authors\":\"I. Shkredov\",\"doi\":\"10.4153/s0008414x23000500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In our paper we study multiplicative properties of difference sets $A-A$ for large sets $A \\\\subseteq \\\\mathbb{Z}/q\\\\mathbb{Z}$ in the case of composite $q$. We obtain a quantitative version of a result of A. Fish about the structure of the product sets $(A-A)(A-A)$. Also, we show that the multiplicative covering number of any difference set is always small.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008414x23000500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4153/s0008414x23000500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
在合数$q$的情况下,研究了大集合$A \subseteq \mathbb{Z}/q\mathbb{Z}$的差分集$A-A$的乘法性质。我们得到了a . Fish关于积集$(a - a)$ (a - a)$结构的结果的一个定量版本。并且证明了任意差分集的乘法覆盖数总是很小的。
On some multiplicative properties of large difference sets
In our paper we study multiplicative properties of difference sets $A-A$ for large sets $A \subseteq \mathbb{Z}/q\mathbb{Z}$ in the case of composite $q$. We obtain a quantitative version of a result of A. Fish about the structure of the product sets $(A-A)(A-A)$. Also, we show that the multiplicative covering number of any difference set is always small.