非阿基米德参数曲线对活度测量的均匀分布

Pub Date : 2021-10-11 DOI:10.3792/pjaa.97.011
Reimi Irokawa, Y. Okuyama
{"title":"非阿基米德参数曲线对活度测量的均匀分布","authors":"Reimi Irokawa, Y. Okuyama","doi":"10.3792/pjaa.97.011","DOIUrl":null,"url":null,"abstract":"For every pair of an analytic family $f=f_{t}$ of endomorphisms of degree $>1$ of the Berkovich projective line $\\mathbb{P}^{1,\\mathrm{an}}$ over an algebraically closed and complete non-trivially valued field $K$ and an analytically marked point $a=a(t)$ in $\\mathbb{P}^{1,\\mathrm{an}}$ both parametrized by a domain $V$ in the Berkovich analytification of a smooth projective algebraic curve $C/K$, we establish the equidistribution of the averaged pullbacks of any value in $\\mathbb{P}^{1,\\mathrm{an}}$ but a subset of logarithmic capacity 0 under the sequence of the morphisms $a_{n}=a_{n}(t)=f_{t}^{n}(a(t)):V\\to\\mathbb{P}^{1,\\mathrm{an}}$, towards the activity measure $\\mu_{(f,a)}$ on $V$ associated with $f$ and $a$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equidistribution in non-archimedean parameter curves towards the activity measures\",\"authors\":\"Reimi Irokawa, Y. Okuyama\",\"doi\":\"10.3792/pjaa.97.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For every pair of an analytic family $f=f_{t}$ of endomorphisms of degree $>1$ of the Berkovich projective line $\\\\mathbb{P}^{1,\\\\mathrm{an}}$ over an algebraically closed and complete non-trivially valued field $K$ and an analytically marked point $a=a(t)$ in $\\\\mathbb{P}^{1,\\\\mathrm{an}}$ both parametrized by a domain $V$ in the Berkovich analytification of a smooth projective algebraic curve $C/K$, we establish the equidistribution of the averaged pullbacks of any value in $\\\\mathbb{P}^{1,\\\\mathrm{an}}$ but a subset of logarithmic capacity 0 under the sequence of the morphisms $a_{n}=a_{n}(t)=f_{t}^{n}(a(t)):V\\\\to\\\\mathbb{P}^{1,\\\\mathrm{an}}$, towards the activity measure $\\\\mu_{(f,a)}$ on $V$ associated with $f$ and $a$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3792/pjaa.97.011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3792/pjaa.97.011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于光滑射影代数曲线C/K$的Berkovich分析中$\mathbb{P}^{1, $ mathm {an}}$在代数闭完全非平凡值域$K$上的解析族$f=f_{t}$和$\mathbb{P}^{1, $ mathm {an}}$上的解析标记点$a=a(t)$的每一对,均被参数化的域$V$,我们建立了$\mathbb{P}^{1,\ mathm {an}}$中任意值的平均回调的均匀分布,但对数容量为0的子集,在态射$a_{n}=a_{n}(t)=f_{t}^{n}(a(t))的序列下:V\到$ mathbb{P}^{1,\ mathm {an}}$,在$V$上与$f$和$a$相关联的活动测度$\mu_{(f,a)}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Equidistribution in non-archimedean parameter curves towards the activity measures
For every pair of an analytic family $f=f_{t}$ of endomorphisms of degree $>1$ of the Berkovich projective line $\mathbb{P}^{1,\mathrm{an}}$ over an algebraically closed and complete non-trivially valued field $K$ and an analytically marked point $a=a(t)$ in $\mathbb{P}^{1,\mathrm{an}}$ both parametrized by a domain $V$ in the Berkovich analytification of a smooth projective algebraic curve $C/K$, we establish the equidistribution of the averaged pullbacks of any value in $\mathbb{P}^{1,\mathrm{an}}$ but a subset of logarithmic capacity 0 under the sequence of the morphisms $a_{n}=a_{n}(t)=f_{t}^{n}(a(t)):V\to\mathbb{P}^{1,\mathrm{an}}$, towards the activity measure $\mu_{(f,a)}$ on $V$ associated with $f$ and $a$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信