组合推导及其逆映射

I. Protasov
{"title":"组合推导及其逆映射","authors":"I. Protasov","doi":"10.2478/s11533-013-0313-x","DOIUrl":null,"url":null,"abstract":"Let G be a group and PG be the Boolean algebra of all subsets of G. A mapping Δ: PG → PG defined by Δ(A) = {g ∈ G: gA ∩ A is infinite} is called the combinatorial derivation. The mapping Δ can be considered as an analogue of the topological derivation d: PX→ PX, A ↦ Ad, where X is a topological space and Ad is the set of all limit points of A. We study the behaviour of subsets of G under action of Δ and its inverse mapping ∇. For example, we show that if G is infinite and I is an ideal in PG such that Δ(A) ∈ I and ∇(A) ⊆ I for each A ∈ I then I = PG.","PeriodicalId":50988,"journal":{"name":"Central European Journal of Mathematics","volume":"1 1","pages":"2176-2181"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The combinatorial derivation and its inverse mapping\",\"authors\":\"I. Protasov\",\"doi\":\"10.2478/s11533-013-0313-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G be a group and PG be the Boolean algebra of all subsets of G. A mapping Δ: PG → PG defined by Δ(A) = {g ∈ G: gA ∩ A is infinite} is called the combinatorial derivation. The mapping Δ can be considered as an analogue of the topological derivation d: PX→ PX, A ↦ Ad, where X is a topological space and Ad is the set of all limit points of A. We study the behaviour of subsets of G under action of Δ and its inverse mapping ∇. For example, we show that if G is infinite and I is an ideal in PG such that Δ(A) ∈ I and ∇(A) ⊆ I for each A ∈ I then I = PG.\",\"PeriodicalId\":50988,\"journal\":{\"name\":\"Central European Journal of Mathematics\",\"volume\":\"1 1\",\"pages\":\"2176-2181\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/s11533-013-0313-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s11533-013-0313-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

设G是一个群,PG是G的所有子集的布尔代数。由Δ(a) = {G∈G: gA∩a is infinite}定义的映射Δ: PG→PG称为组合派生。映射Δ可以看作是拓扑推导d: PX→PX, A∈Ad的类似物,其中X是一个拓扑空间,Ad是A的所有极限点的集合。我们研究了G的子集在Δ及其逆映射∇作用下的行为。例如,我们证明,如果G是无限的,并且I是PG中的一个理想,使得Δ(A)∈I和∇(A)∈I对每个A∈I,则I = PG。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The combinatorial derivation and its inverse mapping
Let G be a group and PG be the Boolean algebra of all subsets of G. A mapping Δ: PG → PG defined by Δ(A) = {g ∈ G: gA ∩ A is infinite} is called the combinatorial derivation. The mapping Δ can be considered as an analogue of the topological derivation d: PX→ PX, A ↦ Ad, where X is a topological space and Ad is the set of all limit points of A. We study the behaviour of subsets of G under action of Δ and its inverse mapping ∇. For example, we show that if G is infinite and I is an ideal in PG such that Δ(A) ∈ I and ∇(A) ⊆ I for each A ∈ I then I = PG.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
3-8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信