分数阶动力学的质量生成和非欧几里德度量

Ervin Goldfain
{"title":"分数阶动力学的质量生成和非欧几里德度量","authors":"Ervin Goldfain","doi":"10.20944/PREPRINTS202011.0350.V1","DOIUrl":null,"url":null,"abstract":"Fractional-time Schrodinger equation (FTSE) describes the evolution of quantum processes endowed with memory effects. FTSE manifestly breaks all consistency requirements of quantum field theory (unitarity, locality and compliance with the clustering theorem), unless the order of fractional differentiation and integration falls close to one. Working in the context of the minimal fractal manifold, we confirm here that FTSE a) provides an unforeseen generation mechanism for massive fields and, b) approximates the attributes of gravitational metric.","PeriodicalId":23650,"journal":{"name":"viXra","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mass Generation and Non-Euclidean Metric from Fractional Dynamics\",\"authors\":\"Ervin Goldfain\",\"doi\":\"10.20944/PREPRINTS202011.0350.V1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fractional-time Schrodinger equation (FTSE) describes the evolution of quantum processes endowed with memory effects. FTSE manifestly breaks all consistency requirements of quantum field theory (unitarity, locality and compliance with the clustering theorem), unless the order of fractional differentiation and integration falls close to one. Working in the context of the minimal fractal manifold, we confirm here that FTSE a) provides an unforeseen generation mechanism for massive fields and, b) approximates the attributes of gravitational metric.\",\"PeriodicalId\":23650,\"journal\":{\"name\":\"viXra\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"viXra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20944/PREPRINTS202011.0350.V1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"viXra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20944/PREPRINTS202011.0350.V1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分数时间薛定谔方程(FTSE)描述了具有记忆效应的量子过程的演化。FTSE显然打破了量子场论的所有一致性要求(统一性、局部性和遵从聚类定理),除非分数阶微分和积分的阶数接近于1。在最小分形流形的背景下工作,我们在这里确认FTSE a)为大质量场提供了不可预见的生成机制,b)近似于引力度量的属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mass Generation and Non-Euclidean Metric from Fractional Dynamics
Fractional-time Schrodinger equation (FTSE) describes the evolution of quantum processes endowed with memory effects. FTSE manifestly breaks all consistency requirements of quantum field theory (unitarity, locality and compliance with the clustering theorem), unless the order of fractional differentiation and integration falls close to one. Working in the context of the minimal fractal manifold, we confirm here that FTSE a) provides an unforeseen generation mechanism for massive fields and, b) approximates the attributes of gravitational metric.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信