长度缓慢增长的代数

A. Guterman, D. Kudryavtsev
{"title":"长度缓慢增长的代数","authors":"A. Guterman, D. Kudryavtsev","doi":"10.1142/s0218196722500564","DOIUrl":null,"url":null,"abstract":"We investigate the class of finite dimensional not necessary associative algebras that have slowly growing length, that is, for any algebra in this class its length is less than or equal to its dimension. We show that this class is considerably big, in particular, finite dimensional Lie algebras as well as many other important classical finite dimensional algebras belong to this class, for example, Leibniz algebras, Novikov algebras, and Zinbiel algebras. An exact upper bounds for the length of these algebras is proved. To do this we transfer the method of characteristic sequences to non-unital algebras and find certain polynomial conditions on the algebra elements that guarantee the slow growth of the length function. MSC: 15A03,17A99,15A78","PeriodicalId":13615,"journal":{"name":"Int. J. Algebra Comput.","volume":"18 1","pages":"1307-1325"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Algebras of slowly growing length\",\"authors\":\"A. Guterman, D. Kudryavtsev\",\"doi\":\"10.1142/s0218196722500564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the class of finite dimensional not necessary associative algebras that have slowly growing length, that is, for any algebra in this class its length is less than or equal to its dimension. We show that this class is considerably big, in particular, finite dimensional Lie algebras as well as many other important classical finite dimensional algebras belong to this class, for example, Leibniz algebras, Novikov algebras, and Zinbiel algebras. An exact upper bounds for the length of these algebras is proved. To do this we transfer the method of characteristic sequences to non-unital algebras and find certain polynomial conditions on the algebra elements that guarantee the slow growth of the length function. MSC: 15A03,17A99,15A78\",\"PeriodicalId\":13615,\"journal\":{\"name\":\"Int. J. Algebra Comput.\",\"volume\":\"18 1\",\"pages\":\"1307-1325\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Algebra Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218196722500564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Algebra Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218196722500564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

研究一类长度缓慢增长的有限维非必要结合代数,即该类中任意代数的长度都小于或等于其维数。我们证明了这一类是相当大的,特别是有限维李代数以及许多其他重要的经典有限维代数都属于这一类,如莱布尼兹代数、诺维科夫代数、津比尔代数。证明了这些代数长度的一个精确上界。为此,我们将特征序列的方法推广到非一元代数中,并在代数元素上找到了保证长度函数缓慢增长的多项式条件。MSC: 15 a03 17 a99 15 a78
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algebras of slowly growing length
We investigate the class of finite dimensional not necessary associative algebras that have slowly growing length, that is, for any algebra in this class its length is less than or equal to its dimension. We show that this class is considerably big, in particular, finite dimensional Lie algebras as well as many other important classical finite dimensional algebras belong to this class, for example, Leibniz algebras, Novikov algebras, and Zinbiel algebras. An exact upper bounds for the length of these algebras is proved. To do this we transfer the method of characteristic sequences to non-unital algebras and find certain polynomial conditions on the algebra elements that guarantee the slow growth of the length function. MSC: 15A03,17A99,15A78
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信