{"title":"无相转移催化剂条件下AlPMo12O40催化H2O2模型燃料新型氧化脱硫研究","authors":"M. J. Silva, L. Santos","doi":"10.1155/2013/147945","DOIUrl":null,"url":null,"abstract":"A novel process was developed for oxidative desulfurization (ODS) in the absence of a phase transfer catalyst (PTC) using only Keggin heteropolyacids and their aluminum salts as catalysts. Reactions were performed in biphasic mixtures of isooctane/acetonitrile, with dibenzothiophene (DBT) as a model sulfur compound and hydrogen peroxide as the oxidant. Remarkably, only the AlPMo12O40-catalyzed reactions resulted in complete oxidation of DBT into DBT sulfone, which was totally extracted by acetonitrile, reducing the sulfur content of isooctane from the 1000 ppm to H3PMo12O40 > AlPW12O40 > H3PW12O40. The absence of a PTC, acidic organic peroxides, and the use of hydrogen peroxide, an environmentally benign oxidant, make up the positive aspects of AlPMo12O40-catalyzed ODS reactions. In these reactions, high rates of DBT removal (ca. 100%) were achieved within a short time (ca. 2 hours) and under mild reaction conditions.","PeriodicalId":15303,"journal":{"name":"Journal of Chemical Technology & Biotechnology","volume":"251 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Novel Oxidative Desulfurization of a Model Fuel with H2O2 Catalyzed by AlPMo12O40 under Phase Transfer Catalyst-Free Conditions\",\"authors\":\"M. J. Silva, L. Santos\",\"doi\":\"10.1155/2013/147945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel process was developed for oxidative desulfurization (ODS) in the absence of a phase transfer catalyst (PTC) using only Keggin heteropolyacids and their aluminum salts as catalysts. Reactions were performed in biphasic mixtures of isooctane/acetonitrile, with dibenzothiophene (DBT) as a model sulfur compound and hydrogen peroxide as the oxidant. Remarkably, only the AlPMo12O40-catalyzed reactions resulted in complete oxidation of DBT into DBT sulfone, which was totally extracted by acetonitrile, reducing the sulfur content of isooctane from the 1000 ppm to H3PMo12O40 > AlPW12O40 > H3PW12O40. The absence of a PTC, acidic organic peroxides, and the use of hydrogen peroxide, an environmentally benign oxidant, make up the positive aspects of AlPMo12O40-catalyzed ODS reactions. In these reactions, high rates of DBT removal (ca. 100%) were achieved within a short time (ca. 2 hours) and under mild reaction conditions.\",\"PeriodicalId\":15303,\"journal\":{\"name\":\"Journal of Chemical Technology & Biotechnology\",\"volume\":\"251 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Technology & Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/147945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Technology & Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/147945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Novel Oxidative Desulfurization of a Model Fuel with H2O2 Catalyzed by AlPMo12O40 under Phase Transfer Catalyst-Free Conditions
A novel process was developed for oxidative desulfurization (ODS) in the absence of a phase transfer catalyst (PTC) using only Keggin heteropolyacids and their aluminum salts as catalysts. Reactions were performed in biphasic mixtures of isooctane/acetonitrile, with dibenzothiophene (DBT) as a model sulfur compound and hydrogen peroxide as the oxidant. Remarkably, only the AlPMo12O40-catalyzed reactions resulted in complete oxidation of DBT into DBT sulfone, which was totally extracted by acetonitrile, reducing the sulfur content of isooctane from the 1000 ppm to H3PMo12O40 > AlPW12O40 > H3PW12O40. The absence of a PTC, acidic organic peroxides, and the use of hydrogen peroxide, an environmentally benign oxidant, make up the positive aspects of AlPMo12O40-catalyzed ODS reactions. In these reactions, high rates of DBT removal (ca. 100%) were achieved within a short time (ca. 2 hours) and under mild reaction conditions.