{"title":"小相干变量选择过饱和设计的构造","authors":"Youran Qi, Peter Chien","doi":"10.51387/23-nejsds34","DOIUrl":null,"url":null,"abstract":"The supersaturated design is often used to discover important factors in an experiment with a large number of factors and a small number of runs. We propose a method for constructing supersaturated designs with small coherence. Such designs are useful for variable selection methods such as the Lasso. Examples are provided to illustrate the proposed method.","PeriodicalId":94360,"journal":{"name":"The New England Journal of Statistics in Data Science","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Construction of Supersaturated Designs with Small Coherence for Variable Selection\",\"authors\":\"Youran Qi, Peter Chien\",\"doi\":\"10.51387/23-nejsds34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The supersaturated design is often used to discover important factors in an experiment with a large number of factors and a small number of runs. We propose a method for constructing supersaturated designs with small coherence. Such designs are useful for variable selection methods such as the Lasso. Examples are provided to illustrate the proposed method.\",\"PeriodicalId\":94360,\"journal\":{\"name\":\"The New England Journal of Statistics in Data Science\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The New England Journal of Statistics in Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51387/23-nejsds34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The New England Journal of Statistics in Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51387/23-nejsds34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Construction of Supersaturated Designs with Small Coherence for Variable Selection
The supersaturated design is often used to discover important factors in an experiment with a large number of factors and a small number of runs. We propose a method for constructing supersaturated designs with small coherence. Such designs are useful for variable selection methods such as the Lasso. Examples are provided to illustrate the proposed method.