{"title":"基于GP-zip3的无损压缩算法的进化综合","authors":"A. Kattan, R. Poli","doi":"10.1109/CEC.2010.5585956","DOIUrl":null,"url":null,"abstract":"Here we propose GP-zip3, a system which uses Genetic Programming to find optimal ways to combine standard compression algorithms for the purpose of compressing files and archives. GP-zip3 evolves programs with multiple components. One component analyses statistical features extracted from the raw data to be compressed (seen as a sequence of 8-bit integers) to divide the data into blocks. These blocks are then projected onto a two-dimensional Euclidean space via two further (evolved) program components. K-means clustering is applied to group similar data blocks. Each cluster is then labelled with the optimal compression algorithm for its member blocks. Once a program that achieves good compression is evolved, it can be used on unseen data without the requirement for any further evolution. GP-zip3 is similar to its predecessor, GP-zip2. Both systems outperform a variety of standard compression algorithms and are faster than other evolutionary compression techniques. However, GP-zip2 was still substantially slower than off-the-shelf algorithms. GP-zip3 alleviates this problem by using a novel fitness evaluation strategy. More specifically, GP-zip3 evolves and then uses decision trees to predict the performance of GP individuals without requiring them to be used to compress the training data. As shown in a variety of experiments, this speeds up evolution in GP-zip3 considerably over GP-zip2 while achieving similar compression results, thereby significantly broadening the scope of application of the approach.","PeriodicalId":6344,"journal":{"name":"2009 IEEE Congress on Evolutionary Computation","volume":"17 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Evolutionary synthesis of lossless compression algorithms with GP-zip3\",\"authors\":\"A. Kattan, R. Poli\",\"doi\":\"10.1109/CEC.2010.5585956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here we propose GP-zip3, a system which uses Genetic Programming to find optimal ways to combine standard compression algorithms for the purpose of compressing files and archives. GP-zip3 evolves programs with multiple components. One component analyses statistical features extracted from the raw data to be compressed (seen as a sequence of 8-bit integers) to divide the data into blocks. These blocks are then projected onto a two-dimensional Euclidean space via two further (evolved) program components. K-means clustering is applied to group similar data blocks. Each cluster is then labelled with the optimal compression algorithm for its member blocks. Once a program that achieves good compression is evolved, it can be used on unseen data without the requirement for any further evolution. GP-zip3 is similar to its predecessor, GP-zip2. Both systems outperform a variety of standard compression algorithms and are faster than other evolutionary compression techniques. However, GP-zip2 was still substantially slower than off-the-shelf algorithms. GP-zip3 alleviates this problem by using a novel fitness evaluation strategy. More specifically, GP-zip3 evolves and then uses decision trees to predict the performance of GP individuals without requiring them to be used to compress the training data. As shown in a variety of experiments, this speeds up evolution in GP-zip3 considerably over GP-zip2 while achieving similar compression results, thereby significantly broadening the scope of application of the approach.\",\"PeriodicalId\":6344,\"journal\":{\"name\":\"2009 IEEE Congress on Evolutionary Computation\",\"volume\":\"17 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Congress on Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2010.5585956\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2010.5585956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evolutionary synthesis of lossless compression algorithms with GP-zip3
Here we propose GP-zip3, a system which uses Genetic Programming to find optimal ways to combine standard compression algorithms for the purpose of compressing files and archives. GP-zip3 evolves programs with multiple components. One component analyses statistical features extracted from the raw data to be compressed (seen as a sequence of 8-bit integers) to divide the data into blocks. These blocks are then projected onto a two-dimensional Euclidean space via two further (evolved) program components. K-means clustering is applied to group similar data blocks. Each cluster is then labelled with the optimal compression algorithm for its member blocks. Once a program that achieves good compression is evolved, it can be used on unseen data without the requirement for any further evolution. GP-zip3 is similar to its predecessor, GP-zip2. Both systems outperform a variety of standard compression algorithms and are faster than other evolutionary compression techniques. However, GP-zip2 was still substantially slower than off-the-shelf algorithms. GP-zip3 alleviates this problem by using a novel fitness evaluation strategy. More specifically, GP-zip3 evolves and then uses decision trees to predict the performance of GP individuals without requiring them to be used to compress the training data. As shown in a variety of experiments, this speeds up evolution in GP-zip3 considerably over GP-zip2 while achieving similar compression results, thereby significantly broadening the scope of application of the approach.