P. Calabresi, D. Centonze, P. Gubellini, A. Pisani, G. Bernardi
{"title":"阻断m2样毒蕈碱受体可增强皮质纹状体突触的长期增强。","authors":"P. Calabresi, D. Centonze, P. Gubellini, A. Pisani, G. Bernardi","doi":"10.1046/j.1460-9568.1998.00348.x","DOIUrl":null,"url":null,"abstract":"Acetylcholine (ACh) exerts a crucial role in learning and memory. The striatum contains the highest concentration of this transmitter in the brain. This structure expresses two different forms of synaptic plasticity, long-term depression (LTD) and long-term potentiation (LTP), which might contribute to the storage of motor skills and some cognitive processes. We have investigated the role of M2-like muscarinic receptors in striatal LTP by utilizing intracellular recordings in vitro from a rat corticostriatal slice preparation. Methoctramine (250 nM), an antagonist of M2-like muscarinic receptors, enhanced striatal LTP induced in the absence of external magnesium (Mg2+) by high-frequency stimulation (HFS) of corticostriatal fibres. Methoctramine did not affect the amplitude of excitatory postsynaptic potentials (EPSPs) when bath applied either before or after the conditioning tetanus suggesting that a critical increase of ACh concentrations is produced only during HFS. Methoctramine per se failed to enhance the NMDA-mediated EPSPs recorded in the absence of external Mg2+ and in the presence of 10 microM CNQX. Methoctramine antagonized the presynaptic inhibitory action of neostigmine, an inhibitor of ACh-esterase, and oxotremorine, an agonist of M2-like muscarinic receptors. These data indicate that the activation of M2-like muscarinic receptors exerts a negative influence on striatal LTP, probably by reducing the release of glutamate from corticostriatal fibres and they suggest a complex modulatory effect of ACh in striatal synaptic plasticity.","PeriodicalId":79424,"journal":{"name":"Supplement ... to the European journal of neuroscience","volume":"68 1","pages":"3020-3"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Blockade of M2-like muscarinic receptors enhances long-term potentiation at corticostriatal synapses.\",\"authors\":\"P. Calabresi, D. Centonze, P. Gubellini, A. Pisani, G. Bernardi\",\"doi\":\"10.1046/j.1460-9568.1998.00348.x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Acetylcholine (ACh) exerts a crucial role in learning and memory. The striatum contains the highest concentration of this transmitter in the brain. This structure expresses two different forms of synaptic plasticity, long-term depression (LTD) and long-term potentiation (LTP), which might contribute to the storage of motor skills and some cognitive processes. We have investigated the role of M2-like muscarinic receptors in striatal LTP by utilizing intracellular recordings in vitro from a rat corticostriatal slice preparation. Methoctramine (250 nM), an antagonist of M2-like muscarinic receptors, enhanced striatal LTP induced in the absence of external magnesium (Mg2+) by high-frequency stimulation (HFS) of corticostriatal fibres. Methoctramine did not affect the amplitude of excitatory postsynaptic potentials (EPSPs) when bath applied either before or after the conditioning tetanus suggesting that a critical increase of ACh concentrations is produced only during HFS. Methoctramine per se failed to enhance the NMDA-mediated EPSPs recorded in the absence of external Mg2+ and in the presence of 10 microM CNQX. Methoctramine antagonized the presynaptic inhibitory action of neostigmine, an inhibitor of ACh-esterase, and oxotremorine, an agonist of M2-like muscarinic receptors. These data indicate that the activation of M2-like muscarinic receptors exerts a negative influence on striatal LTP, probably by reducing the release of glutamate from corticostriatal fibres and they suggest a complex modulatory effect of ACh in striatal synaptic plasticity.\",\"PeriodicalId\":79424,\"journal\":{\"name\":\"Supplement ... to the European journal of neuroscience\",\"volume\":\"68 1\",\"pages\":\"3020-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Supplement ... to the European journal of neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1046/j.1460-9568.1998.00348.x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Supplement ... to the European journal of neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1046/j.1460-9568.1998.00348.x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Blockade of M2-like muscarinic receptors enhances long-term potentiation at corticostriatal synapses.
Acetylcholine (ACh) exerts a crucial role in learning and memory. The striatum contains the highest concentration of this transmitter in the brain. This structure expresses two different forms of synaptic plasticity, long-term depression (LTD) and long-term potentiation (LTP), which might contribute to the storage of motor skills and some cognitive processes. We have investigated the role of M2-like muscarinic receptors in striatal LTP by utilizing intracellular recordings in vitro from a rat corticostriatal slice preparation. Methoctramine (250 nM), an antagonist of M2-like muscarinic receptors, enhanced striatal LTP induced in the absence of external magnesium (Mg2+) by high-frequency stimulation (HFS) of corticostriatal fibres. Methoctramine did not affect the amplitude of excitatory postsynaptic potentials (EPSPs) when bath applied either before or after the conditioning tetanus suggesting that a critical increase of ACh concentrations is produced only during HFS. Methoctramine per se failed to enhance the NMDA-mediated EPSPs recorded in the absence of external Mg2+ and in the presence of 10 microM CNQX. Methoctramine antagonized the presynaptic inhibitory action of neostigmine, an inhibitor of ACh-esterase, and oxotremorine, an agonist of M2-like muscarinic receptors. These data indicate that the activation of M2-like muscarinic receptors exerts a negative influence on striatal LTP, probably by reducing the release of glutamate from corticostriatal fibres and they suggest a complex modulatory effect of ACh in striatal synaptic plasticity.