类鱼游泳中的多体水动力相互作用

IF 12.2 1区 工程技术 Q1 MECHANICS
M. Timm, R. Pandhare, Hassan Masoud
{"title":"类鱼游泳中的多体水动力相互作用","authors":"M. Timm, R. Pandhare, Hassan Masoud","doi":"10.1115/1.4062219","DOIUrl":null,"url":null,"abstract":"Many animals in nature travel in groups either for protection, survival, or endurance. Among these, certain species do so under the burden of aero/hydrodynamic loads, which incites questions as to the significance of the multi-body fluid-mediated interactions that are inherent to collective flying/swimming. Prime examples of such creatures are fish, which are commonly seen traveling in highly organized groups of large numbers. Indeed, over the years, there have been numerous attempts to examine hydrodynamic interactions among self-propelled fish-like swimmers. Though many have studied this phenomenon, their motivations have varied from understanding animal behavior to extracting universal fluid dynamical principles and transplanting them into engineering applications. The approaches utilized to carry out these investigations include theoretical and computational analyses, field observations, and experiments using various abstractions of biological fish. Here, we compile representative investigations focused on the collective hydrodynamics of fish-like swimmers. The selected body of works are reviewed in the context of their methodologies and findings, so as to draw parallels, reveal previously unnoticed associations, contrast differences, and highlight open questions.","PeriodicalId":8048,"journal":{"name":"Applied Mechanics Reviews","volume":"7 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-body Hydrodynamic Interactions in Fish-like Swimming\",\"authors\":\"M. Timm, R. Pandhare, Hassan Masoud\",\"doi\":\"10.1115/1.4062219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many animals in nature travel in groups either for protection, survival, or endurance. Among these, certain species do so under the burden of aero/hydrodynamic loads, which incites questions as to the significance of the multi-body fluid-mediated interactions that are inherent to collective flying/swimming. Prime examples of such creatures are fish, which are commonly seen traveling in highly organized groups of large numbers. Indeed, over the years, there have been numerous attempts to examine hydrodynamic interactions among self-propelled fish-like swimmers. Though many have studied this phenomenon, their motivations have varied from understanding animal behavior to extracting universal fluid dynamical principles and transplanting them into engineering applications. The approaches utilized to carry out these investigations include theoretical and computational analyses, field observations, and experiments using various abstractions of biological fish. Here, we compile representative investigations focused on the collective hydrodynamics of fish-like swimmers. The selected body of works are reviewed in the context of their methodologies and findings, so as to draw parallels, reveal previously unnoticed associations, contrast differences, and highlight open questions.\",\"PeriodicalId\":8048,\"journal\":{\"name\":\"Applied Mechanics Reviews\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2023-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mechanics Reviews\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062219\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mechanics Reviews","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062219","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

自然界中的许多动物成群结队地旅行,要么是为了保护自己,要么是为了生存,要么是为了耐力。其中,某些物种是在空气/水动力载荷的负担下这样做的,这引发了关于集体飞行/游泳所固有的多体流体介导的相互作用的重要性的问题。这种生物的主要例子是鱼,它们通常以高度有组织的大群旅行。事实上,多年来,已经有无数的尝试来研究自我推进的鱼状游泳者之间的流体动力学相互作用。虽然许多人已经研究了这一现象,但他们的动机各不相同,从理解动物行为到提取通用流体动力学原理并将其移植到工程应用中。用于开展这些调查的方法包括理论和计算分析、实地观察和使用各种生物鱼类抽象的实验。在这里,我们汇编了有代表性的研究,集中在鱼状游泳者的集体流体动力学上。选定的作品体在其方法和发现的背景下进行审查,以便绘制相似之处,揭示以前未被注意到的联系,对比差异,并突出开放的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-body Hydrodynamic Interactions in Fish-like Swimming
Many animals in nature travel in groups either for protection, survival, or endurance. Among these, certain species do so under the burden of aero/hydrodynamic loads, which incites questions as to the significance of the multi-body fluid-mediated interactions that are inherent to collective flying/swimming. Prime examples of such creatures are fish, which are commonly seen traveling in highly organized groups of large numbers. Indeed, over the years, there have been numerous attempts to examine hydrodynamic interactions among self-propelled fish-like swimmers. Though many have studied this phenomenon, their motivations have varied from understanding animal behavior to extracting universal fluid dynamical principles and transplanting them into engineering applications. The approaches utilized to carry out these investigations include theoretical and computational analyses, field observations, and experiments using various abstractions of biological fish. Here, we compile representative investigations focused on the collective hydrodynamics of fish-like swimmers. The selected body of works are reviewed in the context of their methodologies and findings, so as to draw parallels, reveal previously unnoticed associations, contrast differences, and highlight open questions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
28.20
自引率
0.70%
发文量
13
审稿时长
>12 weeks
期刊介绍: Applied Mechanics Reviews (AMR) is an international review journal that serves as a premier venue for dissemination of material across all subdisciplines of applied mechanics and engineering science, including fluid and solid mechanics, heat transfer, dynamics and vibration, and applications.AMR provides an archival repository for state-of-the-art and retrospective survey articles and reviews of research areas and curricular developments. The journal invites commentary on research and education policy in different countries. The journal also invites original tutorial and educational material in applied mechanics targeting non-specialist audiences, including undergraduate and K-12 students.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信