{"title":"随机休假策略下的单个服务器队列","authors":"Priyanka Kalita, G. Choudhury","doi":"10.1051/ro/2019083","DOIUrl":null,"url":null,"abstract":"This paper deals with an M/G/1 queueing system with random vacation policy, in which the server takes the maximum number of random vacations till it finds minimum one message (customer) waiting in a queue at a vacation completion epoch. If no arrival occurs after completing maximum number of random vacations, the server stays dormant in the system and waits for the upcoming arrival. Here, we obtain steady state queue size distribution at an idle period completion epoch and service completion epoch. We also obtain the steady state system size probabilities and system state probabilities. Some significant measures such as a mean number of customers served during the busy period, Laplace-Stieltjes transform of unfinished work and its corresponding mean value and second moment have been obtained for the system. A cost optimal policy have been developed in terms of the average cost function to determine a locally optimal random vacation policy at a lower cost. Finally, we present various numerical results for the above system performance measures.","PeriodicalId":54509,"journal":{"name":"Rairo-Operations Research","volume":"29 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A single server queue under random vacation policy\",\"authors\":\"Priyanka Kalita, G. Choudhury\",\"doi\":\"10.1051/ro/2019083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with an M/G/1 queueing system with random vacation policy, in which the server takes the maximum number of random vacations till it finds minimum one message (customer) waiting in a queue at a vacation completion epoch. If no arrival occurs after completing maximum number of random vacations, the server stays dormant in the system and waits for the upcoming arrival. Here, we obtain steady state queue size distribution at an idle period completion epoch and service completion epoch. We also obtain the steady state system size probabilities and system state probabilities. Some significant measures such as a mean number of customers served during the busy period, Laplace-Stieltjes transform of unfinished work and its corresponding mean value and second moment have been obtained for the system. A cost optimal policy have been developed in terms of the average cost function to determine a locally optimal random vacation policy at a lower cost. Finally, we present various numerical results for the above system performance measures.\",\"PeriodicalId\":54509,\"journal\":{\"name\":\"Rairo-Operations Research\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2019-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rairo-Operations Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1051/ro/2019083\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rairo-Operations Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1051/ro/2019083","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
A single server queue under random vacation policy
This paper deals with an M/G/1 queueing system with random vacation policy, in which the server takes the maximum number of random vacations till it finds minimum one message (customer) waiting in a queue at a vacation completion epoch. If no arrival occurs after completing maximum number of random vacations, the server stays dormant in the system and waits for the upcoming arrival. Here, we obtain steady state queue size distribution at an idle period completion epoch and service completion epoch. We also obtain the steady state system size probabilities and system state probabilities. Some significant measures such as a mean number of customers served during the busy period, Laplace-Stieltjes transform of unfinished work and its corresponding mean value and second moment have been obtained for the system. A cost optimal policy have been developed in terms of the average cost function to determine a locally optimal random vacation policy at a lower cost. Finally, we present various numerical results for the above system performance measures.
期刊介绍:
RAIRO-Operations Research is an international journal devoted to high-level pure and applied research on all aspects of operations research. All papers published in RAIRO-Operations Research are critically refereed according to international standards. Any paper will either be accepted (possibly with minor revisions) either submitted to another evaluation (after a major revision) or rejected. Every effort will be made by the Editorial Board to ensure a first answer concerning a submitted paper within three months, and a final decision in a period of time not exceeding six months.