离散心肌模型的速度-曲率关系

A. Feldman, Y. Chernyak, R. Cohen
{"title":"离散心肌模型的速度-曲率关系","authors":"A. Feldman, Y. Chernyak, R. Cohen","doi":"10.1109/IEMBS.1996.646284","DOIUrl":null,"url":null,"abstract":"The authors derive the curvature relation (the dependence of the wave speed on wavefront curvature) for a discrete model of an excitable medium allowing inhomogeneities in the limiting case of a medium with no recovery process. The model incorporates an element weighting distribution w that is varied locally to match the required values of the local plane wave speed, critical curvature, and effective diffusion constant. The authors successfully linked their discrete model to myocardium using valves obtained from the Luo-Rudy model.","PeriodicalId":20427,"journal":{"name":"Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society","volume":"9 1","pages":"1846-1847 vol.5"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Speed-curvature relation for a discrete model of myocardium\",\"authors\":\"A. Feldman, Y. Chernyak, R. Cohen\",\"doi\":\"10.1109/IEMBS.1996.646284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors derive the curvature relation (the dependence of the wave speed on wavefront curvature) for a discrete model of an excitable medium allowing inhomogeneities in the limiting case of a medium with no recovery process. The model incorporates an element weighting distribution w that is varied locally to match the required values of the local plane wave speed, critical curvature, and effective diffusion constant. The authors successfully linked their discrete model to myocardium using valves obtained from the Luo-Rudy model.\",\"PeriodicalId\":20427,\"journal\":{\"name\":\"Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society\",\"volume\":\"9 1\",\"pages\":\"1846-1847 vol.5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMBS.1996.646284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMBS.1996.646284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在无恢复过程的介质的极限情况下,导出了允许非均匀性的可激介质离散模型的曲率关系(波速与波前曲率的依赖关系)。该模型包含一个局部变化的元素权重分布w,以匹配局部平面波速度、临界曲率和有效扩散常数的所需值。作者利用从Luo-Rudy模型中获得的瓣膜成功地将离散模型与心肌联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Speed-curvature relation for a discrete model of myocardium
The authors derive the curvature relation (the dependence of the wave speed on wavefront curvature) for a discrete model of an excitable medium allowing inhomogeneities in the limiting case of a medium with no recovery process. The model incorporates an element weighting distribution w that is varied locally to match the required values of the local plane wave speed, critical curvature, and effective diffusion constant. The authors successfully linked their discrete model to myocardium using valves obtained from the Luo-Rudy model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信