基于gpu的任务并行协同过滤推荐系统

Q3 Medicine
N. Sivaramakrishnan, V. Subramaniyaswamy
{"title":"基于gpu的任务并行协同过滤推荐系统","authors":"N. Sivaramakrishnan, V. Subramaniyaswamy","doi":"10.1109/I-SMAC.2018.8653709","DOIUrl":null,"url":null,"abstract":"Collaborative filtering is one among the top most preferred techniques when implementing recommendation systems. In recent times, more interest has turned towards parallel GPU-based implementation of collaborative filtering algorithms. Concurrent way of solving any problem is more preferable by everyone nowadays. The objective of GPU-based collaborative filtering recommender system is to produce recommendations in parallel and choosing the best among all. We have proposed three different methods namely Parallel Item Average Computation (PIAC), Parallel User Based Collaborative Filtering (PUBCF) and Parallel Item Based Collaborative Filtering (PIBCF).We have evaluated all these methods with standard evaluation metrics. As a result of task parallelism, the PIBCF method produces optimum choice for providing better recommendation results.","PeriodicalId":53631,"journal":{"name":"Koomesh","volume":"17 1","pages":"111-116"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"GPU-based Collaborative Filtering Recommendation System using Task parallelism approach\",\"authors\":\"N. Sivaramakrishnan, V. Subramaniyaswamy\",\"doi\":\"10.1109/I-SMAC.2018.8653709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Collaborative filtering is one among the top most preferred techniques when implementing recommendation systems. In recent times, more interest has turned towards parallel GPU-based implementation of collaborative filtering algorithms. Concurrent way of solving any problem is more preferable by everyone nowadays. The objective of GPU-based collaborative filtering recommender system is to produce recommendations in parallel and choosing the best among all. We have proposed three different methods namely Parallel Item Average Computation (PIAC), Parallel User Based Collaborative Filtering (PUBCF) and Parallel Item Based Collaborative Filtering (PIBCF).We have evaluated all these methods with standard evaluation metrics. As a result of task parallelism, the PIBCF method produces optimum choice for providing better recommendation results.\",\"PeriodicalId\":53631,\"journal\":{\"name\":\"Koomesh\",\"volume\":\"17 1\",\"pages\":\"111-116\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Koomesh\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I-SMAC.2018.8653709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Koomesh","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I-SMAC.2018.8653709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 5

摘要

协同过滤是实现推荐系统时最受欢迎的技术之一。近年来,更多的兴趣转向了基于并行gpu的协同过滤算法的实现。如今,并行解决任何问题的方法都更受大家的欢迎。基于gpu的协同过滤推荐系统的目标是并行生成推荐并从中选择最佳推荐。我们提出了并行项目平均计算(PIAC)、并行用户协同过滤(PUBCF)和并行项目协同过滤(PIBCF)三种不同的方法。我们用标准的评价指标对所有这些方法进行了评价。由于任务并行性,PIBCF方法产生最优选择,从而提供更好的推荐结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GPU-based Collaborative Filtering Recommendation System using Task parallelism approach
Collaborative filtering is one among the top most preferred techniques when implementing recommendation systems. In recent times, more interest has turned towards parallel GPU-based implementation of collaborative filtering algorithms. Concurrent way of solving any problem is more preferable by everyone nowadays. The objective of GPU-based collaborative filtering recommender system is to produce recommendations in parallel and choosing the best among all. We have proposed three different methods namely Parallel Item Average Computation (PIAC), Parallel User Based Collaborative Filtering (PUBCF) and Parallel Item Based Collaborative Filtering (PIBCF).We have evaluated all these methods with standard evaluation metrics. As a result of task parallelism, the PIBCF method produces optimum choice for providing better recommendation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Koomesh
Koomesh Medicine-Medicine (all)
CiteScore
0.80
自引率
0.00%
发文量
0
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信