{"title":"FLRW时空中的克莱因戈登场","authors":"S. Sharma, P. Dhungel, U. Khanal","doi":"10.3126/sw.v13i13.30480","DOIUrl":null,"url":null,"abstract":"As a continuation of solving the equations governing the perturbation of the Friedmann-Lemaitre-RobertsonWalker (FLRW) space-time in Newman-Penrose formalism, the behaviour of the massive Klein-Gordon (KG) field coupled to the FLRW has been investigated. The Equation of Motion has been written and solved separately for radial and temporal parts. The former solution has come to be in terms of the Gegenbauer polynomials and spherical harmonics and the latter being in the WKB approximation. The particle current, energy momentum tensor and potential have also been obtained.","PeriodicalId":21637,"journal":{"name":"Scientific World","volume":"66 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Klein Gordon Field in FLRW Space-Time\",\"authors\":\"S. Sharma, P. Dhungel, U. Khanal\",\"doi\":\"10.3126/sw.v13i13.30480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a continuation of solving the equations governing the perturbation of the Friedmann-Lemaitre-RobertsonWalker (FLRW) space-time in Newman-Penrose formalism, the behaviour of the massive Klein-Gordon (KG) field coupled to the FLRW has been investigated. The Equation of Motion has been written and solved separately for radial and temporal parts. The former solution has come to be in terms of the Gegenbauer polynomials and spherical harmonics and the latter being in the WKB approximation. The particle current, energy momentum tensor and potential have also been obtained.\",\"PeriodicalId\":21637,\"journal\":{\"name\":\"Scientific World\",\"volume\":\"66 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific World\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3126/sw.v13i13.30480\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific World","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3126/sw.v13i13.30480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
As a continuation of solving the equations governing the perturbation of the Friedmann-Lemaitre-RobertsonWalker (FLRW) space-time in Newman-Penrose formalism, the behaviour of the massive Klein-Gordon (KG) field coupled to the FLRW has been investigated. The Equation of Motion has been written and solved separately for radial and temporal parts. The former solution has come to be in terms of the Gegenbauer polynomials and spherical harmonics and the latter being in the WKB approximation. The particle current, energy momentum tensor and potential have also been obtained.