用早期拒绝法生成指数分布变量

Baoying Fan, Yusong Du, Baodian Wei, Xiao Ma
{"title":"用早期拒绝法生成指数分布变量","authors":"Baoying Fan, Yusong Du, Baodian Wei, Xiao Ma","doi":"10.1109/ICCC47050.2019.9064220","DOIUrl":null,"url":null,"abstract":"We revisit von Neumann’s algorithm for generating exponentially distributed variable. This algorithm requires$e^{2}/(e-1)\\approx 4.30$ uniform deviates from (0,1) on average to generate an exponentially distributed variable. In 2016, the early rejection was suggested by Karney to use in von Neumann’s algorithm for lowering the expected number of uniform deviates to $el(\\sqrt{e}-1)\\approx 4.19$. In this paper, we give a new parameter setting for the early rejection step, which can help reduce the expected number to a minimum of 4. The experimental results also show that our improved version of von Neumann’s algorithm can be slightly more efficient than the version presented by Karney especially for software implementations.","PeriodicalId":6739,"journal":{"name":"2019 IEEE 5th International Conference on Computer and Communications (ICCC)","volume":"25 1","pages":"1307-1311"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On Generating Exponentially Distributed Variates by Using Early Rejection\",\"authors\":\"Baoying Fan, Yusong Du, Baodian Wei, Xiao Ma\",\"doi\":\"10.1109/ICCC47050.2019.9064220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We revisit von Neumann’s algorithm for generating exponentially distributed variable. This algorithm requires$e^{2}/(e-1)\\\\approx 4.30$ uniform deviates from (0,1) on average to generate an exponentially distributed variable. In 2016, the early rejection was suggested by Karney to use in von Neumann’s algorithm for lowering the expected number of uniform deviates to $el(\\\\sqrt{e}-1)\\\\approx 4.19$. In this paper, we give a new parameter setting for the early rejection step, which can help reduce the expected number to a minimum of 4. The experimental results also show that our improved version of von Neumann’s algorithm can be slightly more efficient than the version presented by Karney especially for software implementations.\",\"PeriodicalId\":6739,\"journal\":{\"name\":\"2019 IEEE 5th International Conference on Computer and Communications (ICCC)\",\"volume\":\"25 1\",\"pages\":\"1307-1311\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 5th International Conference on Computer and Communications (ICCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCC47050.2019.9064220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 5th International Conference on Computer and Communications (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCC47050.2019.9064220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们重新讨论了冯·诺依曼生成指数分布变量的算法。该算法需要$e^{2}/(e-1)\approx 4.30$均匀偏离(0,1)的平均值来生成指数分布变量。2016年,Karney建议将早期排斥用于冯·诺伊曼算法中,以降低均匀偏差的期望数至$el(\sqrt{e}-1)\approx 4.19$。在本文中,我们给出了一个新的参数设置的早期拒绝步骤,可以帮助减少期望的数量到最小的4。实验结果还表明,我们改进的冯·诺依曼算法在软件实现方面比Karney提出的算法效率略高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Generating Exponentially Distributed Variates by Using Early Rejection
We revisit von Neumann’s algorithm for generating exponentially distributed variable. This algorithm requires$e^{2}/(e-1)\approx 4.30$ uniform deviates from (0,1) on average to generate an exponentially distributed variable. In 2016, the early rejection was suggested by Karney to use in von Neumann’s algorithm for lowering the expected number of uniform deviates to $el(\sqrt{e}-1)\approx 4.19$. In this paper, we give a new parameter setting for the early rejection step, which can help reduce the expected number to a minimum of 4. The experimental results also show that our improved version of von Neumann’s algorithm can be slightly more efficient than the version presented by Karney especially for software implementations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信