Jae-Hwa Im, Jongyul Kim, Jonguk Kim, Seongwook Jin, S. Maeng
{"title":"裸机云中实时迁移的按需虚拟化","authors":"Jae-Hwa Im, Jongyul Kim, Jonguk Kim, Seongwook Jin, S. Maeng","doi":"10.1145/3127479.3129254","DOIUrl":null,"url":null,"abstract":"The level of demand for bare-metal cloud services has increased rapidly because such services are cost-effective for several types of workloads, and some cloud clients prefer a single-tenant environment due to the lower security vulnerability of such enviornments. However, as the bare-metal cloud does not utilize a virtualization layer, it cannot use live migration. Thus, there is a lack of manageability with the bare-metal cloud. Live migration support can improve the manageability of bare-metal cloud services significantly. This paper suggests an on-demand virtualization technique to improve the manageability of bare-metal cloud services. A thin virtualization layer is inserted into the bare-metal cloud when live migration is requested. After the completion of the live migration process, the thin virtualization layer is removed from the host. We modified BitVisor [19] to implement on-demand virtualization and live migration on the x86 architecture. The elapsed time of on-demand virtualization was negligible. It takes about 20 ms to insert the virtualization layer and 30 ms to remove the one. After removing the virtualization layer, the host machine works with bare-metal performance.","PeriodicalId":20679,"journal":{"name":"Proceedings of the 2017 Symposium on Cloud Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"On-demand virtualization for live migration in bare metal cloud\",\"authors\":\"Jae-Hwa Im, Jongyul Kim, Jonguk Kim, Seongwook Jin, S. Maeng\",\"doi\":\"10.1145/3127479.3129254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The level of demand for bare-metal cloud services has increased rapidly because such services are cost-effective for several types of workloads, and some cloud clients prefer a single-tenant environment due to the lower security vulnerability of such enviornments. However, as the bare-metal cloud does not utilize a virtualization layer, it cannot use live migration. Thus, there is a lack of manageability with the bare-metal cloud. Live migration support can improve the manageability of bare-metal cloud services significantly. This paper suggests an on-demand virtualization technique to improve the manageability of bare-metal cloud services. A thin virtualization layer is inserted into the bare-metal cloud when live migration is requested. After the completion of the live migration process, the thin virtualization layer is removed from the host. We modified BitVisor [19] to implement on-demand virtualization and live migration on the x86 architecture. The elapsed time of on-demand virtualization was negligible. It takes about 20 ms to insert the virtualization layer and 30 ms to remove the one. After removing the virtualization layer, the host machine works with bare-metal performance.\",\"PeriodicalId\":20679,\"journal\":{\"name\":\"Proceedings of the 2017 Symposium on Cloud Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 Symposium on Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3127479.3129254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 Symposium on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3127479.3129254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On-demand virtualization for live migration in bare metal cloud
The level of demand for bare-metal cloud services has increased rapidly because such services are cost-effective for several types of workloads, and some cloud clients prefer a single-tenant environment due to the lower security vulnerability of such enviornments. However, as the bare-metal cloud does not utilize a virtualization layer, it cannot use live migration. Thus, there is a lack of manageability with the bare-metal cloud. Live migration support can improve the manageability of bare-metal cloud services significantly. This paper suggests an on-demand virtualization technique to improve the manageability of bare-metal cloud services. A thin virtualization layer is inserted into the bare-metal cloud when live migration is requested. After the completion of the live migration process, the thin virtualization layer is removed from the host. We modified BitVisor [19] to implement on-demand virtualization and live migration on the x86 architecture. The elapsed time of on-demand virtualization was negligible. It takes about 20 ms to insert the virtualization layer and 30 ms to remove the one. After removing the virtualization layer, the host machine works with bare-metal performance.