肺ct透视登记中实时c臂姿态估计的呼吸补偿神经网络

Brian C. Lee, Ayushi Sinha, N. Varble, W. Pritchard, J. Karanian, B. Wood, T. Bydlon
{"title":"肺ct透视登记中实时c臂姿态估计的呼吸补偿神经网络","authors":"Brian C. Lee, Ayushi Sinha, N. Varble, W. Pritchard, J. Karanian, B. Wood, T. Bydlon","doi":"10.1109/ISBI52829.2022.9761705","DOIUrl":null,"url":null,"abstract":"Augmentation of interventional c-arm fluoroscopy using information extracted from pre-operative imaging has the potential to reduce procedure times and improve patient outcomes in minimally invasive peripheral lung procedures, where breathing motion, small airways, and anatomical variation create a challenging environment for planned pathway navigation. Extraction of the rigid c-arm pose relative to preoperative images is a crucial prerequisite; however, accurate 2D-3D fluoroscopy-CT soft tissue registration in the presence of natural deformable patient motion remains challenging. We propose to train a patient-specific neural network on synthetic fluoroscopy derived from the patient’s pre-operative CT, augmented by a generalized breathing motion model, to predict c-arm pose. Our model includes an image supervision path that infers the x-ray projection geometry, providing training stability across patients. We train our model on synthetic fluoroscopy generated from preclinical swine CT and we evaluate on synthetic and real fluoroscopy.","PeriodicalId":6827,"journal":{"name":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","volume":"25 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Breathing-Compensated Neural Networks for Real Time C-Arm Pose Estimation in Lung CT-Fluoroscopy Registration\",\"authors\":\"Brian C. Lee, Ayushi Sinha, N. Varble, W. Pritchard, J. Karanian, B. Wood, T. Bydlon\",\"doi\":\"10.1109/ISBI52829.2022.9761705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Augmentation of interventional c-arm fluoroscopy using information extracted from pre-operative imaging has the potential to reduce procedure times and improve patient outcomes in minimally invasive peripheral lung procedures, where breathing motion, small airways, and anatomical variation create a challenging environment for planned pathway navigation. Extraction of the rigid c-arm pose relative to preoperative images is a crucial prerequisite; however, accurate 2D-3D fluoroscopy-CT soft tissue registration in the presence of natural deformable patient motion remains challenging. We propose to train a patient-specific neural network on synthetic fluoroscopy derived from the patient’s pre-operative CT, augmented by a generalized breathing motion model, to predict c-arm pose. Our model includes an image supervision path that infers the x-ray projection geometry, providing training stability across patients. We train our model on synthetic fluoroscopy generated from preclinical swine CT and we evaluate on synthetic and real fluoroscopy.\",\"PeriodicalId\":6827,\"journal\":{\"name\":\"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)\",\"volume\":\"25 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI52829.2022.9761705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI52829.2022.9761705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

利用术前影像提取的信息增强介入c臂透视有可能减少手术时间,改善微创周围肺手术的患者预后,呼吸运动、小气道和解剖变化为计划的路径导航创造了一个具有挑战性的环境。相对于术前图像的刚性c臂姿势的提取是一个至关重要的先决条件;然而,在存在自然变形的患者运动时,准确的2D-3D透视- ct软组织注册仍然具有挑战性。我们建议在合成透视上训练一个患者特异性神经网络,该神经网络来源于患者术前CT,并辅以广义呼吸运动模型,以预测c臂姿势。我们的模型包括一个图像监督路径,该路径推断x射线投影几何形状,提供跨患者的训练稳定性。我们在临床前猪CT生成的合成透视上训练我们的模型,并在合成透视和真实透视上进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Breathing-Compensated Neural Networks for Real Time C-Arm Pose Estimation in Lung CT-Fluoroscopy Registration
Augmentation of interventional c-arm fluoroscopy using information extracted from pre-operative imaging has the potential to reduce procedure times and improve patient outcomes in minimally invasive peripheral lung procedures, where breathing motion, small airways, and anatomical variation create a challenging environment for planned pathway navigation. Extraction of the rigid c-arm pose relative to preoperative images is a crucial prerequisite; however, accurate 2D-3D fluoroscopy-CT soft tissue registration in the presence of natural deformable patient motion remains challenging. We propose to train a patient-specific neural network on synthetic fluoroscopy derived from the patient’s pre-operative CT, augmented by a generalized breathing motion model, to predict c-arm pose. Our model includes an image supervision path that infers the x-ray projection geometry, providing training stability across patients. We train our model on synthetic fluoroscopy generated from preclinical swine CT and we evaluate on synthetic and real fluoroscopy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信