智能电网的高峰需求调度

Sean Yaw, B. Mumey, Erin McDonald, Jennifer Lemke
{"title":"智能电网的高峰需求调度","authors":"Sean Yaw, B. Mumey, Erin McDonald, Jennifer Lemke","doi":"10.1109/SmartGridComm.2014.7007741","DOIUrl":null,"url":null,"abstract":"Smart grid technology has the opportunity to revolutionize our control over power consumption. Currently power-requesting jobs are scheduled in an on-demand fashion; power draw begins when the consumer requests power (turns on an appliance) and ends when the job is complete (appliance is turned off). Often such jobs may have some flexibility in their starting times (e.g. a dishwasher or electric vehicle charger). We consider the problem scheduling power jobs so as to minimize peak demand. We first consider a general version of the problem in which the job intervals can be staggered. While the problem is known to be NP-hard (we show it is even NP-hard to approximate), we provide an effective new heuristic algorithm. For several important special cases, we provide new constant-factor approximation algorithms that improve on previous results. Simulation results using real power job data show that our algorithms improve on existing methods.","PeriodicalId":6499,"journal":{"name":"2014 IEEE International Conference on Smart Grid Communications (SmartGridComm)","volume":"3 1","pages":"770-775"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Peak demand scheduling in the Smart Grid\",\"authors\":\"Sean Yaw, B. Mumey, Erin McDonald, Jennifer Lemke\",\"doi\":\"10.1109/SmartGridComm.2014.7007741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smart grid technology has the opportunity to revolutionize our control over power consumption. Currently power-requesting jobs are scheduled in an on-demand fashion; power draw begins when the consumer requests power (turns on an appliance) and ends when the job is complete (appliance is turned off). Often such jobs may have some flexibility in their starting times (e.g. a dishwasher or electric vehicle charger). We consider the problem scheduling power jobs so as to minimize peak demand. We first consider a general version of the problem in which the job intervals can be staggered. While the problem is known to be NP-hard (we show it is even NP-hard to approximate), we provide an effective new heuristic algorithm. For several important special cases, we provide new constant-factor approximation algorithms that improve on previous results. Simulation results using real power job data show that our algorithms improve on existing methods.\",\"PeriodicalId\":6499,\"journal\":{\"name\":\"2014 IEEE International Conference on Smart Grid Communications (SmartGridComm)\",\"volume\":\"3 1\",\"pages\":\"770-775\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Smart Grid Communications (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm.2014.7007741\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Smart Grid Communications (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2014.7007741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

智能电网技术有机会彻底改变我们对电力消耗的控制。目前,需要电力的作业是按需调度的;当使用者请求电源(打开设备)时开始耗电,并在作业完成时结束(设备关闭)。通常这类工作在开始时间上有一定的灵活性(例如,洗碗工或电动汽车充电器)。考虑了以峰值需求最小化为目标的电力作业调度问题。我们首先考虑这个问题的一般版本,其中作业间隔可以错开。虽然已知问题是np困难的(我们表明它甚至是np困难的近似),但我们提供了一种有效的新启发式算法。对于一些重要的特殊情况,我们提供了新的常因子近似算法,改进了以前的结果。实际电力工作数据的仿真结果表明,我们的算法是现有方法的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Peak demand scheduling in the Smart Grid
Smart grid technology has the opportunity to revolutionize our control over power consumption. Currently power-requesting jobs are scheduled in an on-demand fashion; power draw begins when the consumer requests power (turns on an appliance) and ends when the job is complete (appliance is turned off). Often such jobs may have some flexibility in their starting times (e.g. a dishwasher or electric vehicle charger). We consider the problem scheduling power jobs so as to minimize peak demand. We first consider a general version of the problem in which the job intervals can be staggered. While the problem is known to be NP-hard (we show it is even NP-hard to approximate), we provide an effective new heuristic algorithm. For several important special cases, we provide new constant-factor approximation algorithms that improve on previous results. Simulation results using real power job data show that our algorithms improve on existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信