多重测量的广义不确定度关系

Lin Wu, Xue-Ke Song, Liu Ye, Dong Wang
{"title":"多重测量的广义不确定度关系","authors":"Lin Wu,&nbsp;Xue-Ke Song,&nbsp;Liu Ye,&nbsp;Dong Wang","doi":"10.1007/s43673-022-00054-3","DOIUrl":null,"url":null,"abstract":"<div><p>The uncertainty relation is regarded as a remarkable feature of quantum mechanics differing from the classical counterpart, and it plays a backbone role in the region of quantum information theory. In principle, the uncertainty relation offers a nontrivial limit to predict the outcome of arbitrarily incompatible observed variables. Therefore, to pursue a more general uncertainty relations ought to be considerably important for obtaining accurate predictions of multi-observable measurement results in genuine multipartite systems. In this article, we derive a generalized entropic uncertainty relation (EUR) for multi-measurement in a multipartite framework. It is proved that the bound we proposed is stronger than the one derived from Renes et al. in [Phys. Rev. Lett. 103,020402(2009) ] for the arbitrary multipartite case. As an illustration, we take several typical scenarios that confirm that our proposed bound outperforms that presented by Renes et al. Hence, we believe our findings provide generalized uncertainty relations with regard to multi-measurement setting, and facilitate the EUR’s applications on quantum precision measurement regarding genuine multipartite systems.</p></div>","PeriodicalId":100007,"journal":{"name":"AAPPS Bulletin","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43673-022-00054-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Generalized uncertainty relations for multiple measurements\",\"authors\":\"Lin Wu,&nbsp;Xue-Ke Song,&nbsp;Liu Ye,&nbsp;Dong Wang\",\"doi\":\"10.1007/s43673-022-00054-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The uncertainty relation is regarded as a remarkable feature of quantum mechanics differing from the classical counterpart, and it plays a backbone role in the region of quantum information theory. In principle, the uncertainty relation offers a nontrivial limit to predict the outcome of arbitrarily incompatible observed variables. Therefore, to pursue a more general uncertainty relations ought to be considerably important for obtaining accurate predictions of multi-observable measurement results in genuine multipartite systems. In this article, we derive a generalized entropic uncertainty relation (EUR) for multi-measurement in a multipartite framework. It is proved that the bound we proposed is stronger than the one derived from Renes et al. in [Phys. Rev. Lett. 103,020402(2009) ] for the arbitrary multipartite case. As an illustration, we take several typical scenarios that confirm that our proposed bound outperforms that presented by Renes et al. Hence, we believe our findings provide generalized uncertainty relations with regard to multi-measurement setting, and facilitate the EUR’s applications on quantum precision measurement regarding genuine multipartite systems.</p></div>\",\"PeriodicalId\":100007,\"journal\":{\"name\":\"AAPPS Bulletin\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43673-022-00054-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AAPPS Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43673-022-00054-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPPS Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43673-022-00054-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

不确定性关系被认为是量子力学不同于经典力学的一个显著特点,在量子信息论领域起着中流砥柱的作用。从原理上讲,不确定性关系为预测任意不相容观测变量的结果提供了一个非难限。因此,追求一种更一般的不确定性关系对于在真正的多方系统中获得多观测测量结果的准确预测应该是相当重要的。在本文中,我们推导出了在多方框架下多重测量的广义熵不确定性关系(EUR)。证明我们提出的约束比 Renes 等人在 [Phys. Rev. Lett.因此,我们相信我们的发现提供了关于多测量环境的广义不确定性关系,并促进了欧元在真正多方系统量子精密测量方面的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized uncertainty relations for multiple measurements

The uncertainty relation is regarded as a remarkable feature of quantum mechanics differing from the classical counterpart, and it plays a backbone role in the region of quantum information theory. In principle, the uncertainty relation offers a nontrivial limit to predict the outcome of arbitrarily incompatible observed variables. Therefore, to pursue a more general uncertainty relations ought to be considerably important for obtaining accurate predictions of multi-observable measurement results in genuine multipartite systems. In this article, we derive a generalized entropic uncertainty relation (EUR) for multi-measurement in a multipartite framework. It is proved that the bound we proposed is stronger than the one derived from Renes et al. in [Phys. Rev. Lett. 103,020402(2009) ] for the arbitrary multipartite case. As an illustration, we take several typical scenarios that confirm that our proposed bound outperforms that presented by Renes et al. Hence, we believe our findings provide generalized uncertainty relations with regard to multi-measurement setting, and facilitate the EUR’s applications on quantum precision measurement regarding genuine multipartite systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信