基于混合蛾焰优化和深度神经网络算法的云-健康物联网(IOHT)任务调度

Sci. Program. Pub Date : 2022-01-05 DOI:10.1155/2022/4100352
N. Arivazhagan, K. Somasundaram, D. Babu, M. Nayagam, R. Bommi, Gouse Baig Mohammad, P. R. Kumar, Yuvaraj Natarajan, V. J. Arulkarthick, V. Shanmuganathan, K. Srihari, M. R. Vignesh, Venkatesa Prabhu Sundramurthy
{"title":"基于混合蛾焰优化和深度神经网络算法的云-健康物联网(IOHT)任务调度","authors":"N. Arivazhagan, K. Somasundaram, D. Babu, M. Nayagam, R. Bommi, Gouse Baig Mohammad, P. R. Kumar, Yuvaraj Natarajan, V. J. Arulkarthick, V. Shanmuganathan, K. Srihari, M. R. Vignesh, Venkatesa Prabhu Sundramurthy","doi":"10.1155/2022/4100352","DOIUrl":null,"url":null,"abstract":"Considering task dependencies, the balancing of the Internet of Health Things (IoHT) scheduling is considered important to reduce the make span rate. In this paper, we developed a smart model approach for the best task schedule of Hybrid Moth Flame Optimization (HMFO) for cloud computing integrated in the IoHT environment over e-healthcare systems. The HMFO guarantees uniform resource assignment and enhanced quality of services (QoS). The model is trained with the Google cluster dataset such that it learns the instances of how a job is scheduled in cloud and the trained HMFO model is used to schedule the jobs in real time. The simulation is conducted on a CloudSim environment to test the scheduling efficacy of the model in hybrid cloud environment. The parameters used by this method for the performance assessment include the use of resources, response time, and energy utilization. In terms of response time, average run time, and lower costs, the hybrid HMFO approach has offered increased response rate with reduced cost and run time than other methods.","PeriodicalId":21628,"journal":{"name":"Sci. Program.","volume":"1 1","pages":"4100352:1-4100352:12"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Cloud-Internet of Health Things (IOHT) Task Scheduling Using Hybrid Moth Flame Optimization with Deep Neural Network Algorithm for E Healthcare Systems\",\"authors\":\"N. Arivazhagan, K. Somasundaram, D. Babu, M. Nayagam, R. Bommi, Gouse Baig Mohammad, P. R. Kumar, Yuvaraj Natarajan, V. J. Arulkarthick, V. Shanmuganathan, K. Srihari, M. R. Vignesh, Venkatesa Prabhu Sundramurthy\",\"doi\":\"10.1155/2022/4100352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Considering task dependencies, the balancing of the Internet of Health Things (IoHT) scheduling is considered important to reduce the make span rate. In this paper, we developed a smart model approach for the best task schedule of Hybrid Moth Flame Optimization (HMFO) for cloud computing integrated in the IoHT environment over e-healthcare systems. The HMFO guarantees uniform resource assignment and enhanced quality of services (QoS). The model is trained with the Google cluster dataset such that it learns the instances of how a job is scheduled in cloud and the trained HMFO model is used to schedule the jobs in real time. The simulation is conducted on a CloudSim environment to test the scheduling efficacy of the model in hybrid cloud environment. The parameters used by this method for the performance assessment include the use of resources, response time, and energy utilization. In terms of response time, average run time, and lower costs, the hybrid HMFO approach has offered increased response rate with reduced cost and run time than other methods.\",\"PeriodicalId\":21628,\"journal\":{\"name\":\"Sci. Program.\",\"volume\":\"1 1\",\"pages\":\"4100352:1-4100352:12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sci. Program.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/4100352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sci. Program.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/4100352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

考虑任务依赖关系,平衡健康物联网调度对降低制造跨度率具有重要意义。在本文中,我们开发了一种智能模型方法,用于在电子医疗保健系统的IoHT环境中集成云计算的混合飞蛾火焰优化(HMFO)的最佳任务调度。HMFO保证了资源的统一分配,提高了服务质量(QoS)。该模型使用谷歌集群数据集进行训练,以便它学习如何在云中调度作业的实例,并且训练后的HMFO模型用于实时调度作业。在CloudSim环境下进行了仿真,验证了该模型在混合云环境下的调度效率。该方法用于性能评估的参数包括资源使用、响应时间和能源利用率。在响应时间、平均运行时间和更低的成本方面,混合HMFO方法比其他方法提供了更高的响应率,同时降低了成本和运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cloud-Internet of Health Things (IOHT) Task Scheduling Using Hybrid Moth Flame Optimization with Deep Neural Network Algorithm for E Healthcare Systems
Considering task dependencies, the balancing of the Internet of Health Things (IoHT) scheduling is considered important to reduce the make span rate. In this paper, we developed a smart model approach for the best task schedule of Hybrid Moth Flame Optimization (HMFO) for cloud computing integrated in the IoHT environment over e-healthcare systems. The HMFO guarantees uniform resource assignment and enhanced quality of services (QoS). The model is trained with the Google cluster dataset such that it learns the instances of how a job is scheduled in cloud and the trained HMFO model is used to schedule the jobs in real time. The simulation is conducted on a CloudSim environment to test the scheduling efficacy of the model in hybrid cloud environment. The parameters used by this method for the performance assessment include the use of resources, response time, and energy utilization. In terms of response time, average run time, and lower costs, the hybrid HMFO approach has offered increased response rate with reduced cost and run time than other methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信