硼杂质和石墨热中子散射对印尼实验动力堆临界计算的影响

Suwoto, H. Adrial, W. Luthfi, T. Setiadipura, Zuhair
{"title":"硼杂质和石墨热中子散射对印尼实验动力堆临界计算的影响","authors":"Suwoto, H. Adrial, W. Luthfi, T. Setiadipura, Zuhair","doi":"10.1063/1.5135511","DOIUrl":null,"url":null,"abstract":"The structural materials of Indonesian Experimental Reactor (RDE) is made from graphite that dominate material used on core structure. So that graphite material is very important role, both as core structure material, reflector and also as a moderator and fuel layer and fuel matrix. In thermal neutron energy range, the neutron scattering collision in moderator material such as graphite influences the neutron cross-section and the resulting energy distribution, so that neutrons will get an increase in energy for excitation in the material. Due to high neutron absorption cross section, boron and its compounds find extensive application in the nuclear industry. In actually it is very difficult to obtain pure uranium or thorium dioxide without any other substance. Usually uranium dioxide or thorium kernel always has impurity material like boron. Boron is one of the materials that has strong neutron absorber, specially for Boron-10. The research starting from modeling of kernel TRISO coated fuel particle, spherical pebble fuel and full core modeling by involving multiple heterogeneity calculations. Boron impurities in the TRISO kernel coated fuel particles was carried out with 27 data varied concentration of boron are 0ppm, 1ppm, 2ppm, 3ppm, 4ppm, 5ppm, 6ppm, 7ppm, 8ppm, 9ppm, 10ppm, 15ppm, 20ppm, 25ppm, 30ppm, 35ppm, 30ppm, 35ppm, 40ppm, 45ppm, 50ppm, 60ppm, 70ppm, 80ppm, 80ppm, 90ppm and 100ppm. All calculation analysis will be done using Monte Carlo MCNP6 with continuous neutron energy cross section taken from ENDF/B-VII file. Investigation of multiplication factor effect due to thermal neutron scattering crossing data S(α,β) for graphite and boron impurities on TRISO UO2 or ThO2 kernel coated fuel particle, spherical pebble fuel and full core calculation will be conducted. The all calculation results of the criticality calculation due to effect of boron impurity for both for UO2 and ThO2 kernel coated fuel particles are clearly showed that there are no significant influences effect on multiplication factor value. While criticality calculations using the S(α,β) option for UO2 and ThO2 kernel fuels give the results of a slightly lower multiplication factor with a maximum percentage difference is below than 1,3% for the calculation of the effective multiplication factor on the full core calculation.The structural materials of Indonesian Experimental Reactor (RDE) is made from graphite that dominate material used on core structure. So that graphite material is very important role, both as core structure material, reflector and also as a moderator and fuel layer and fuel matrix. In thermal neutron energy range, the neutron scattering collision in moderator material such as graphite influences the neutron cross-section and the resulting energy distribution, so that neutrons will get an increase in energy for excitation in the material. Due to high neutron absorption cross section, boron and its compounds find extensive application in the nuclear industry. In actually it is very difficult to obtain pure uranium or thorium dioxide without any other substance. Usually uranium dioxide or thorium kernel always has impurity material like boron. Boron is one of the materials that has strong neutron absorber, specially for Boron-10. The research starting from modeling of kernel TRISO coated fuel particle, sphe...","PeriodicalId":22239,"journal":{"name":"THE 4TH BIOMEDICAL ENGINEERING’S RECENT PROGRESS IN BIOMATERIALS, DRUGS DEVELOPMENT, HEALTH, AND MEDICAL DEVICES: Proceedings of the International Symposium of Biomedical Engineering (ISBE) 2019","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effect of boron impurity and graphite thermal neutron scattering on criticality calculation of Indonesian experimental power reactor\",\"authors\":\"Suwoto, H. Adrial, W. Luthfi, T. Setiadipura, Zuhair\",\"doi\":\"10.1063/1.5135511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The structural materials of Indonesian Experimental Reactor (RDE) is made from graphite that dominate material used on core structure. So that graphite material is very important role, both as core structure material, reflector and also as a moderator and fuel layer and fuel matrix. In thermal neutron energy range, the neutron scattering collision in moderator material such as graphite influences the neutron cross-section and the resulting energy distribution, so that neutrons will get an increase in energy for excitation in the material. Due to high neutron absorption cross section, boron and its compounds find extensive application in the nuclear industry. In actually it is very difficult to obtain pure uranium or thorium dioxide without any other substance. Usually uranium dioxide or thorium kernel always has impurity material like boron. Boron is one of the materials that has strong neutron absorber, specially for Boron-10. The research starting from modeling of kernel TRISO coated fuel particle, spherical pebble fuel and full core modeling by involving multiple heterogeneity calculations. Boron impurities in the TRISO kernel coated fuel particles was carried out with 27 data varied concentration of boron are 0ppm, 1ppm, 2ppm, 3ppm, 4ppm, 5ppm, 6ppm, 7ppm, 8ppm, 9ppm, 10ppm, 15ppm, 20ppm, 25ppm, 30ppm, 35ppm, 30ppm, 35ppm, 40ppm, 45ppm, 50ppm, 60ppm, 70ppm, 80ppm, 80ppm, 90ppm and 100ppm. All calculation analysis will be done using Monte Carlo MCNP6 with continuous neutron energy cross section taken from ENDF/B-VII file. Investigation of multiplication factor effect due to thermal neutron scattering crossing data S(α,β) for graphite and boron impurities on TRISO UO2 or ThO2 kernel coated fuel particle, spherical pebble fuel and full core calculation will be conducted. The all calculation results of the criticality calculation due to effect of boron impurity for both for UO2 and ThO2 kernel coated fuel particles are clearly showed that there are no significant influences effect on multiplication factor value. While criticality calculations using the S(α,β) option for UO2 and ThO2 kernel fuels give the results of a slightly lower multiplication factor with a maximum percentage difference is below than 1,3% for the calculation of the effective multiplication factor on the full core calculation.The structural materials of Indonesian Experimental Reactor (RDE) is made from graphite that dominate material used on core structure. So that graphite material is very important role, both as core structure material, reflector and also as a moderator and fuel layer and fuel matrix. In thermal neutron energy range, the neutron scattering collision in moderator material such as graphite influences the neutron cross-section and the resulting energy distribution, so that neutrons will get an increase in energy for excitation in the material. Due to high neutron absorption cross section, boron and its compounds find extensive application in the nuclear industry. In actually it is very difficult to obtain pure uranium or thorium dioxide without any other substance. Usually uranium dioxide or thorium kernel always has impurity material like boron. Boron is one of the materials that has strong neutron absorber, specially for Boron-10. The research starting from modeling of kernel TRISO coated fuel particle, sphe...\",\"PeriodicalId\":22239,\"journal\":{\"name\":\"THE 4TH BIOMEDICAL ENGINEERING’S RECENT PROGRESS IN BIOMATERIALS, DRUGS DEVELOPMENT, HEALTH, AND MEDICAL DEVICES: Proceedings of the International Symposium of Biomedical Engineering (ISBE) 2019\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"THE 4TH BIOMEDICAL ENGINEERING’S RECENT PROGRESS IN BIOMATERIALS, DRUGS DEVELOPMENT, HEALTH, AND MEDICAL DEVICES: Proceedings of the International Symposium of Biomedical Engineering (ISBE) 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5135511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE 4TH BIOMEDICAL ENGINEERING’S RECENT PROGRESS IN BIOMATERIALS, DRUGS DEVELOPMENT, HEALTH, AND MEDICAL DEVICES: Proceedings of the International Symposium of Biomedical Engineering (ISBE) 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5135511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

印度尼西亚实验堆(RDE)的结构材料以石墨为主要材料,石墨是堆芯结构的主要材料。所以石墨材料的作用非常重要,既可以作为核心结构材料,反射器,也可以作为慢化剂,燃料层和燃料基体。在热中子能量范围内,中子在石墨等慢化剂材料中的散射碰撞会影响中子的截面和产生的能量分布,使中子在材料中得到激发的能量增加。由于高中子吸收截面,硼及其化合物在核工业中有广泛的应用。实际上,在没有任何其他物质的情况下很难获得纯铀或二氧化钍。通常二氧化铀或钍核中都含有硼等杂质物质。硼是中子吸收体较强的材料之一,特别是硼-10。研究从包覆燃料颗粒、球粒燃料和全堆燃料三种不同非均质性模型入手。用27个数据对三iso核包覆燃料颗粒中的硼杂质进行了研究,硼的浓度分别为0ppm、1ppm、2ppm、3ppm、4ppm、5ppm、6ppm、7ppm、8ppm、9ppm、10ppm、15ppm、20ppm、25ppm、30ppm、35ppm、35ppm、35ppm、40ppm、45ppm、50ppm、60ppm、70ppm、80ppm、80ppm、90ppm和100ppm。所有的计算分析将使用蒙特卡罗MCNP6进行,连续中子能量截面取自ENDF/B-VII文件。研究了热中子散射交叉数据S(α,β)对石墨和硼杂质在TRISO UO2或ThO2核包覆燃料颗粒、球形卵石燃料和全堆计算上的倍增因子效应。硼杂质对UO2和ThO2包覆核燃料颗粒的影响临界计算的所有计算结果都清楚地表明,对倍增因子值没有显著的影响。而对于UO2和ThO2内核燃料,使用S(α,β)选项进行临界计算,得到的乘法系数略低,在全堆计算中有效乘法系数的最大百分比差异小于1.3%。印度尼西亚实验堆(RDE)的结构材料以石墨为主要材料,石墨是堆芯结构的主要材料。所以石墨材料的作用非常重要,既可以作为核心结构材料,反射器,也可以作为慢化剂,燃料层和燃料基体。在热中子能量范围内,中子在石墨等慢化剂材料中的散射碰撞会影响中子的截面和产生的能量分布,使中子在材料中得到激发的能量增加。由于高中子吸收截面,硼及其化合物在核工业中有广泛的应用。实际上,在没有任何其他物质的情况下很难获得纯铀或二氧化钍。通常二氧化铀或钍核中都含有硼等杂质物质。硼是中子吸收体较强的材料之一,特别是硼-10。从堆芯包覆燃料颗粒的建模入手,对其进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of boron impurity and graphite thermal neutron scattering on criticality calculation of Indonesian experimental power reactor
The structural materials of Indonesian Experimental Reactor (RDE) is made from graphite that dominate material used on core structure. So that graphite material is very important role, both as core structure material, reflector and also as a moderator and fuel layer and fuel matrix. In thermal neutron energy range, the neutron scattering collision in moderator material such as graphite influences the neutron cross-section and the resulting energy distribution, so that neutrons will get an increase in energy for excitation in the material. Due to high neutron absorption cross section, boron and its compounds find extensive application in the nuclear industry. In actually it is very difficult to obtain pure uranium or thorium dioxide without any other substance. Usually uranium dioxide or thorium kernel always has impurity material like boron. Boron is one of the materials that has strong neutron absorber, specially for Boron-10. The research starting from modeling of kernel TRISO coated fuel particle, spherical pebble fuel and full core modeling by involving multiple heterogeneity calculations. Boron impurities in the TRISO kernel coated fuel particles was carried out with 27 data varied concentration of boron are 0ppm, 1ppm, 2ppm, 3ppm, 4ppm, 5ppm, 6ppm, 7ppm, 8ppm, 9ppm, 10ppm, 15ppm, 20ppm, 25ppm, 30ppm, 35ppm, 30ppm, 35ppm, 40ppm, 45ppm, 50ppm, 60ppm, 70ppm, 80ppm, 80ppm, 90ppm and 100ppm. All calculation analysis will be done using Monte Carlo MCNP6 with continuous neutron energy cross section taken from ENDF/B-VII file. Investigation of multiplication factor effect due to thermal neutron scattering crossing data S(α,β) for graphite and boron impurities on TRISO UO2 or ThO2 kernel coated fuel particle, spherical pebble fuel and full core calculation will be conducted. The all calculation results of the criticality calculation due to effect of boron impurity for both for UO2 and ThO2 kernel coated fuel particles are clearly showed that there are no significant influences effect on multiplication factor value. While criticality calculations using the S(α,β) option for UO2 and ThO2 kernel fuels give the results of a slightly lower multiplication factor with a maximum percentage difference is below than 1,3% for the calculation of the effective multiplication factor on the full core calculation.The structural materials of Indonesian Experimental Reactor (RDE) is made from graphite that dominate material used on core structure. So that graphite material is very important role, both as core structure material, reflector and also as a moderator and fuel layer and fuel matrix. In thermal neutron energy range, the neutron scattering collision in moderator material such as graphite influences the neutron cross-section and the resulting energy distribution, so that neutrons will get an increase in energy for excitation in the material. Due to high neutron absorption cross section, boron and its compounds find extensive application in the nuclear industry. In actually it is very difficult to obtain pure uranium or thorium dioxide without any other substance. Usually uranium dioxide or thorium kernel always has impurity material like boron. Boron is one of the materials that has strong neutron absorber, specially for Boron-10. The research starting from modeling of kernel TRISO coated fuel particle, sphe...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信