{"title":"离散位错动力学中分子动力学信息的概率交叉滑移模型","authors":"A. Malka-Markovitz, B. Devincre, D. Mordehai","doi":"10.2139/ssrn.3603549","DOIUrl":null,"url":null,"abstract":"Abstract We present here a quantitative study of dislocation cross-slip, an essential thermally activated process in deformation of metals, in discrete dislocation dynamics (DDD) simulations. We implemented a stress-dependent line-tension model in DDD simulations, with minimal information from molecular dynamics (MD) simulations. This model allows reproducing in DDD simulations the probabilistic cross-slip rate calculated in MD simulations for Cu in a large range of stresses and temperatures. The implementation of an atomically-scale accurate cross-slip model allows simulating more accurately phenomena such as deformation softening, dislocation-precipitate interaction and dislocation patterning in DDD simulations.","PeriodicalId":18731,"journal":{"name":"Materials Processing & Manufacturing eJournal","volume":"233 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Molecular Dynamics-Informed Probabilistic Cross-Slip Model in Discrete Dislocation Dynamics\",\"authors\":\"A. Malka-Markovitz, B. Devincre, D. Mordehai\",\"doi\":\"10.2139/ssrn.3603549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We present here a quantitative study of dislocation cross-slip, an essential thermally activated process in deformation of metals, in discrete dislocation dynamics (DDD) simulations. We implemented a stress-dependent line-tension model in DDD simulations, with minimal information from molecular dynamics (MD) simulations. This model allows reproducing in DDD simulations the probabilistic cross-slip rate calculated in MD simulations for Cu in a large range of stresses and temperatures. The implementation of an atomically-scale accurate cross-slip model allows simulating more accurately phenomena such as deformation softening, dislocation-precipitate interaction and dislocation patterning in DDD simulations.\",\"PeriodicalId\":18731,\"journal\":{\"name\":\"Materials Processing & Manufacturing eJournal\",\"volume\":\"233 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Processing & Manufacturing eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3603549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Processing & Manufacturing eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3603549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Molecular Dynamics-Informed Probabilistic Cross-Slip Model in Discrete Dislocation Dynamics
Abstract We present here a quantitative study of dislocation cross-slip, an essential thermally activated process in deformation of metals, in discrete dislocation dynamics (DDD) simulations. We implemented a stress-dependent line-tension model in DDD simulations, with minimal information from molecular dynamics (MD) simulations. This model allows reproducing in DDD simulations the probabilistic cross-slip rate calculated in MD simulations for Cu in a large range of stresses and temperatures. The implementation of an atomically-scale accurate cross-slip model allows simulating more accurately phenomena such as deformation softening, dislocation-precipitate interaction and dislocation patterning in DDD simulations.