一种通用型脉宽调制反馈系统的稳定性

R. Walk, J. Rootenberg
{"title":"一种通用型脉宽调制反馈系统的稳定性","authors":"R. Walk, J. Rootenberg","doi":"10.1002/J.1538-7305.1973.TB02709.X","DOIUrl":null,"url":null,"abstract":"Because of its theoretical and practical interest, the stability problem in pulse-width-modulated feedback systems has received an enormous amount of attention. Much of the reported literature deals with highly approximate methods, and the exact approaches, based on Lyapunov's direct method or functional analysis, are quite restrictive and do not easily lend themselves to systematic compensation or design. In this paper, a quite general PWM is considered, and a frequency domain stability criterion is presented, yielding a geometric interpretation in the Popov plane.","PeriodicalId":55391,"journal":{"name":"Bell System Technical Journal","volume":"18 1","pages":"1811-1819"},"PeriodicalIF":0.0000,"publicationDate":"1973-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of a general type of pulse-width-modulated feedback system\",\"authors\":\"R. Walk, J. Rootenberg\",\"doi\":\"10.1002/J.1538-7305.1973.TB02709.X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Because of its theoretical and practical interest, the stability problem in pulse-width-modulated feedback systems has received an enormous amount of attention. Much of the reported literature deals with highly approximate methods, and the exact approaches, based on Lyapunov's direct method or functional analysis, are quite restrictive and do not easily lend themselves to systematic compensation or design. In this paper, a quite general PWM is considered, and a frequency domain stability criterion is presented, yielding a geometric interpretation in the Popov plane.\",\"PeriodicalId\":55391,\"journal\":{\"name\":\"Bell System Technical Journal\",\"volume\":\"18 1\",\"pages\":\"1811-1819\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1973-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bell System Technical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/J.1538-7305.1973.TB02709.X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bell System Technical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/J.1538-7305.1973.TB02709.X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脉宽调制反馈系统的稳定性问题由于其理论和实际意义受到了广泛的关注。许多报道的文献处理的是高度近似的方法,而精确的方法,基于李亚普诺夫的直接方法或功能分析,是相当有限的,不容易给自己提供系统的补偿或设计。本文考虑了一种相当普遍的PWM,并给出了频域稳定性判据,在波波夫平面上给出了几何解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability of a general type of pulse-width-modulated feedback system
Because of its theoretical and practical interest, the stability problem in pulse-width-modulated feedback systems has received an enormous amount of attention. Much of the reported literature deals with highly approximate methods, and the exact approaches, based on Lyapunov's direct method or functional analysis, are quite restrictive and do not easily lend themselves to systematic compensation or design. In this paper, a quite general PWM is considered, and a frequency domain stability criterion is presented, yielding a geometric interpretation in the Popov plane.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信