学习最小显著区回归的螺旋共享网络显著性检测

Zukai Chen, Xin Tan, Hengliang Zhu, Shouhong Ding, Lizhuang Ma, Haichuan Song
{"title":"学习最小显著区回归的螺旋共享网络显著性检测","authors":"Zukai Chen, Xin Tan, Hengliang Zhu, Shouhong Ding, Lizhuang Ma, Haichuan Song","doi":"10.1109/ICASSP.2019.8682531","DOIUrl":null,"url":null,"abstract":"With the development of convolutional neural networks (CNNs), saliency detection methods have made a big progress in recent years. However, the previous methods sometimes mistakenly highlight the non-salient region, especially in complex backgrounds. To solve this problem, a two-stage method for saliency detection is proposed in this paper. In the first stage, a network is used to regress the minimum salient region (RMSR) containing all salient objects. Then in the second stage, in order to fuse the multi-level features, the spiral sharing network (SSN) is proposed for pixel-level detection on the result of RMSR. Experimental results on four public datasets show that our model is effective over the state-of-the-art approaches.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"125 1","pages":"1667-1671"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning the Spiral Sharing Network with Minimum Salient Region Regression for Saliency Detection\",\"authors\":\"Zukai Chen, Xin Tan, Hengliang Zhu, Shouhong Ding, Lizhuang Ma, Haichuan Song\",\"doi\":\"10.1109/ICASSP.2019.8682531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of convolutional neural networks (CNNs), saliency detection methods have made a big progress in recent years. However, the previous methods sometimes mistakenly highlight the non-salient region, especially in complex backgrounds. To solve this problem, a two-stage method for saliency detection is proposed in this paper. In the first stage, a network is used to regress the minimum salient region (RMSR) containing all salient objects. Then in the second stage, in order to fuse the multi-level features, the spiral sharing network (SSN) is proposed for pixel-level detection on the result of RMSR. Experimental results on four public datasets show that our model is effective over the state-of-the-art approaches.\",\"PeriodicalId\":13203,\"journal\":{\"name\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"125 1\",\"pages\":\"1667-1671\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2019.8682531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8682531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着卷积神经网络(cnn)的发展,显著性检测方法近年来取得了很大的进步。然而,以往的方法有时会错误地突出非显著区域,特别是在复杂背景下。为了解决这一问题,本文提出了一种两阶段显著性检测方法。在第一阶段,使用网络回归包含所有显著对象的最小显著区域(RMSR)。然后,在第二阶段,为了融合多层次特征,提出螺旋共享网络(SSN)对RMSR结果进行像素级检测。在四个公共数据集上的实验结果表明,我们的模型比最先进的方法有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning the Spiral Sharing Network with Minimum Salient Region Regression for Saliency Detection
With the development of convolutional neural networks (CNNs), saliency detection methods have made a big progress in recent years. However, the previous methods sometimes mistakenly highlight the non-salient region, especially in complex backgrounds. To solve this problem, a two-stage method for saliency detection is proposed in this paper. In the first stage, a network is used to regress the minimum salient region (RMSR) containing all salient objects. Then in the second stage, in order to fuse the multi-level features, the spiral sharing network (SSN) is proposed for pixel-level detection on the result of RMSR. Experimental results on four public datasets show that our model is effective over the state-of-the-art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信