如何构建多模光纤的“光逆”

IF 2.2 Q3 COMPUTER SCIENCE, CYBERNETICS
Unė G. Būtaitė, Hlib Kupianskyi, T. Čižmár, D. Phillips
{"title":"如何构建多模光纤的“光逆”","authors":"Unė G. Būtaitė, Hlib Kupianskyi, T. Čižmár, D. Phillips","doi":"10.34133/2022/9816026","DOIUrl":null,"url":null,"abstract":"When light propagates through multimode optical fibres (MMFs), the spatial information it carries is scrambled. Wavefront shaping reverses this scrambling, typically one spatial mode at a time—enabling deployment of MMFs as ultrathin microendoscopes. Here, we go beyond sequential wavefront shaping by showing how to simultaneously unscramble all spatial modes emerging from an MMF in parallel. We introduce a passive multiple-scattering element—crafted through the process of inverse design—that is complementary to an MMF and undoes its optical effects. This “optical inverter” makes possible single-shot widefield imaging and super-resolution imaging through MMFs. Our design consists of a cascade of diffractive elements, and can be understood from the perspective of both multi-plane light conversion, and as a physically inspired diffractive neural network. This physical architecture outperforms state-of-the-art electronic neural networks tasked with unscrambling light, as it preserves the phase and coherence information of optical signals flowing through it. We show, in numerical simulations, how to efficiently sort and tune the relative phase of up to ~400 step-index fibre modes, reforming incoherent images of scenes at arbitrary distances from the fibre facet. Our optical inverter can dynamically adapt to see through experimentally realistic flexible fibres—made possible by moulding optical memory effects into its design. The scheme is based on current fabrication technology so could be realised in the near future. Beyond imaging, these concepts open up a range of new avenues for optical multiplexing, communications, and computation in the realms of classical and quantum photonics.","PeriodicalId":45291,"journal":{"name":"International Journal of Intelligent Computing and Cybernetics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"How to Build the “Optical Inverse” of a Multimode Fibre\",\"authors\":\"Unė G. Būtaitė, Hlib Kupianskyi, T. Čižmár, D. Phillips\",\"doi\":\"10.34133/2022/9816026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When light propagates through multimode optical fibres (MMFs), the spatial information it carries is scrambled. Wavefront shaping reverses this scrambling, typically one spatial mode at a time—enabling deployment of MMFs as ultrathin microendoscopes. Here, we go beyond sequential wavefront shaping by showing how to simultaneously unscramble all spatial modes emerging from an MMF in parallel. We introduce a passive multiple-scattering element—crafted through the process of inverse design—that is complementary to an MMF and undoes its optical effects. This “optical inverter” makes possible single-shot widefield imaging and super-resolution imaging through MMFs. Our design consists of a cascade of diffractive elements, and can be understood from the perspective of both multi-plane light conversion, and as a physically inspired diffractive neural network. This physical architecture outperforms state-of-the-art electronic neural networks tasked with unscrambling light, as it preserves the phase and coherence information of optical signals flowing through it. We show, in numerical simulations, how to efficiently sort and tune the relative phase of up to ~400 step-index fibre modes, reforming incoherent images of scenes at arbitrary distances from the fibre facet. Our optical inverter can dynamically adapt to see through experimentally realistic flexible fibres—made possible by moulding optical memory effects into its design. The scheme is based on current fabrication technology so could be realised in the near future. Beyond imaging, these concepts open up a range of new avenues for optical multiplexing, communications, and computation in the realms of classical and quantum photonics.\",\"PeriodicalId\":45291,\"journal\":{\"name\":\"International Journal of Intelligent Computing and Cybernetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Computing and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34133/2022/9816026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Computing and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/2022/9816026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 12

摘要

当光通过多模光纤(mmf)传播时,它所携带的空间信息会被打乱。波前整形逆转了这种混乱,通常是一次一个空间模式,使mmf能够作为超薄显微内窥镜部署。在这里,我们通过展示如何同时解读从MMF并行出现的所有空间模式,超越了顺序波前整形。我们介绍了一种被动的多重散射元件,通过逆设计过程制作,它与MMF互补,并消除其光学效应。这种“光学逆变器”使单镜头广角成像和超分辨率成像成为可能。我们的设计由一连串的衍射元件组成,可以从多平面光转换的角度来理解,也可以作为一个物理启发的衍射神经网络。这种物理结构优于最先进的电子神经网络,因为它保留了流过它的光信号的相位和相干信息。在数值模拟中,我们展示了如何有效地排序和调整高达~400阶跃折射率光纤模式的相对相位,在距离光纤面任意距离处重建场景的非相干图像。我们的光逆变器可以动态适应透过实验真实的柔性纤维,通过在其设计中加入光记忆效应而成为可能。该方案基于当前的制造技术,因此可以在不久的将来实现。除了成像,这些概念还为经典和量子光子学领域的光复用、通信和计算开辟了一系列新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How to Build the “Optical Inverse” of a Multimode Fibre
When light propagates through multimode optical fibres (MMFs), the spatial information it carries is scrambled. Wavefront shaping reverses this scrambling, typically one spatial mode at a time—enabling deployment of MMFs as ultrathin microendoscopes. Here, we go beyond sequential wavefront shaping by showing how to simultaneously unscramble all spatial modes emerging from an MMF in parallel. We introduce a passive multiple-scattering element—crafted through the process of inverse design—that is complementary to an MMF and undoes its optical effects. This “optical inverter” makes possible single-shot widefield imaging and super-resolution imaging through MMFs. Our design consists of a cascade of diffractive elements, and can be understood from the perspective of both multi-plane light conversion, and as a physically inspired diffractive neural network. This physical architecture outperforms state-of-the-art electronic neural networks tasked with unscrambling light, as it preserves the phase and coherence information of optical signals flowing through it. We show, in numerical simulations, how to efficiently sort and tune the relative phase of up to ~400 step-index fibre modes, reforming incoherent images of scenes at arbitrary distances from the fibre facet. Our optical inverter can dynamically adapt to see through experimentally realistic flexible fibres—made possible by moulding optical memory effects into its design. The scheme is based on current fabrication technology so could be realised in the near future. Beyond imaging, these concepts open up a range of new avenues for optical multiplexing, communications, and computation in the realms of classical and quantum photonics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.80
自引率
4.70%
发文量
26
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信