百日咳母源性免疫传播的动力学分析

IF 0.3 Q4 MATHEMATICS
Aisha Aliyu Yakubu, F. Abdullah, Ahmad Izani Md. Ismail, Y. Yatim
{"title":"百日咳母源性免疫传播的动力学分析","authors":"Aisha Aliyu Yakubu, F. Abdullah, Ahmad Izani Md. Ismail, Y. Yatim","doi":"10.3844/jmssp.2020.104.112","DOIUrl":null,"url":null,"abstract":"A susceptible-infected-recovered compartmental model incorporating maternally derived immunity compartment is analyzed in this study. The stability of the pertussis-disease-free and endemic equilibrium is studied. The basic reproduction number is obtained and its behavior analyzed by varying parameters. Numerical simulations indicated that when the waning parameter is increased, the frequency at which the population attains stability varies. However, the infected population does not go extinct even at equilibrium.","PeriodicalId":41981,"journal":{"name":"Jordan Journal of Mathematics and Statistics","volume":"65 1","pages":"104-112"},"PeriodicalIF":0.3000,"publicationDate":"2020-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamical Analysis on the Transmission of Pertussis with Maternally Derived Immunity\",\"authors\":\"Aisha Aliyu Yakubu, F. Abdullah, Ahmad Izani Md. Ismail, Y. Yatim\",\"doi\":\"10.3844/jmssp.2020.104.112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A susceptible-infected-recovered compartmental model incorporating maternally derived immunity compartment is analyzed in this study. The stability of the pertussis-disease-free and endemic equilibrium is studied. The basic reproduction number is obtained and its behavior analyzed by varying parameters. Numerical simulations indicated that when the waning parameter is increased, the frequency at which the population attains stability varies. However, the infected population does not go extinct even at equilibrium.\",\"PeriodicalId\":41981,\"journal\":{\"name\":\"Jordan Journal of Mathematics and Statistics\",\"volume\":\"65 1\",\"pages\":\"104-112\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jordan Journal of Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3844/jmssp.2020.104.112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/jmssp.2020.104.112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本研究分析了包含母源性免疫室的易感-感染-恢复室模型。研究了百日咳无病和地方性平衡的稳定性。得到了基本繁殖数,并通过变化参数对其行为进行了分析。数值模拟表明,当衰减参数增大时,种群达到稳定的频率发生变化。然而,受感染的种群即使在平衡状态下也不会灭绝。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamical Analysis on the Transmission of Pertussis with Maternally Derived Immunity
A susceptible-infected-recovered compartmental model incorporating maternally derived immunity compartment is analyzed in this study. The stability of the pertussis-disease-free and endemic equilibrium is studied. The basic reproduction number is obtained and its behavior analyzed by varying parameters. Numerical simulations indicated that when the waning parameter is increased, the frequency at which the population attains stability varies. However, the infected population does not go extinct even at equilibrium.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信