亚纯函数导数的Picard-Hayman行为

Pub Date : 2020-10-02 DOI:10.5802/CRMATH.96
Yan Xu, Shirong Chen, P. Niu
{"title":"亚纯函数导数的Picard-Hayman行为","authors":"Yan Xu, Shirong Chen, P. Niu","doi":"10.5802/CRMATH.96","DOIUrl":null,"url":null,"abstract":"Let f be a transcendental meromorphic function on C, and P (z),Q(z) be two polynomials with degP (z) > degQ(z). In this paper, we prove that: if f (z) = 0 ⇒ f ′(z) = a(a nonzero constant), except possibly finitely many, then f ′(z)−P (z)/Q(z) has infinitely many zeros. Our result extends or improves some previous related results due to Bergweiler–Pang, Pang–Nevo–Zalcman, Wang–Fang, and the author, et. al. 2020 Mathematics Subject Classification. 30D35, 30D45. Funding. This work was supported by NSFC(Grant No.11471163). Manuscript received 7th January 2020, accepted 4th July 2020.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Picard-Hayman behavior of derivatives of meromorphic functions\",\"authors\":\"Yan Xu, Shirong Chen, P. Niu\",\"doi\":\"10.5802/CRMATH.96\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let f be a transcendental meromorphic function on C, and P (z),Q(z) be two polynomials with degP (z) > degQ(z). In this paper, we prove that: if f (z) = 0 ⇒ f ′(z) = a(a nonzero constant), except possibly finitely many, then f ′(z)−P (z)/Q(z) has infinitely many zeros. Our result extends or improves some previous related results due to Bergweiler–Pang, Pang–Nevo–Zalcman, Wang–Fang, and the author, et. al. 2020 Mathematics Subject Classification. 30D35, 30D45. Funding. This work was supported by NSFC(Grant No.11471163). Manuscript received 7th January 2020, accepted 4th July 2020.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/CRMATH.96\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/CRMATH.96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设f是C上的一个超越亚纯函数,P (z),Q(z)是两个多项式,具有degP (z) > degQ(z)。本文证明了:如果f (z) = 0⇒f ' (z) = a(一个非零常数),除了可能有有限多个,则f ' (z)−P (z)/Q(z)有无穷多个零。我们的结果扩展或改进了Bergweiler-Pang, pang - nev - zalcman, Wang-Fang, and author等人的一些先前的相关结果。2020数学主题分类。30D35, 30D45。资金。国家自然科学基金资助项目(批准号11471163)。2020年1月7日收稿,2020年7月4日收稿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Picard-Hayman behavior of derivatives of meromorphic functions
Let f be a transcendental meromorphic function on C, and P (z),Q(z) be two polynomials with degP (z) > degQ(z). In this paper, we prove that: if f (z) = 0 ⇒ f ′(z) = a(a nonzero constant), except possibly finitely many, then f ′(z)−P (z)/Q(z) has infinitely many zeros. Our result extends or improves some previous related results due to Bergweiler–Pang, Pang–Nevo–Zalcman, Wang–Fang, and the author, et. al. 2020 Mathematics Subject Classification. 30D35, 30D45. Funding. This work was supported by NSFC(Grant No.11471163). Manuscript received 7th January 2020, accepted 4th July 2020.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信