{"title":"具有奇异势的双非线性退化抛物方程","authors":"Junqiang Han","doi":"10.4208/jpde.v35.n4.1","DOIUrl":null,"url":null,"abstract":". The purpose of this paper is to investigate the nonexistence of positive solutions of the following doubly nonlinear degenerate parabolic equations: where Ω is a Carnot-Carath´eodory metric ball in R 2 n + 1 generated by Greiner vector fields, V ∈ L 1 loc ( Ω ) , k ∈ N , m ∈ R , 1 < p < 2 n + 2 k and m + p − 2 > 0. The better lower bound p ∗ for m + p is found and the nonexistence results are proved for p ∗ 6 m + p < 3.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Doubly Nonlinear Degenerate Parabolic Equations with a Singular Potential for Greiner Vector Fields\",\"authors\":\"Junqiang Han\",\"doi\":\"10.4208/jpde.v35.n4.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". The purpose of this paper is to investigate the nonexistence of positive solutions of the following doubly nonlinear degenerate parabolic equations: where Ω is a Carnot-Carath´eodory metric ball in R 2 n + 1 generated by Greiner vector fields, V ∈ L 1 loc ( Ω ) , k ∈ N , m ∈ R , 1 < p < 2 n + 2 k and m + p − 2 > 0. The better lower bound p ∗ for m + p is found and the nonexistence results are proved for p ∗ 6 m + p < 3.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4208/jpde.v35.n4.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/jpde.v35.n4.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
. 本文的目的是研究以下双非线性退化抛物方程的正解的不存在性:其中Ω是由Greiner向量场生成的r2n + 1中的Carnot-Carath ' eodory公制球,V∈l1loc (Ω), k∈n, m∈R, 1 < p < 2n + 2k, m + p−2 > 0。找到了m + p的较好的下界p∗,并证明了p∗6 m + p < 3时的不存在性结果。
Doubly Nonlinear Degenerate Parabolic Equations with a Singular Potential for Greiner Vector Fields
. The purpose of this paper is to investigate the nonexistence of positive solutions of the following doubly nonlinear degenerate parabolic equations: where Ω is a Carnot-Carath´eodory metric ball in R 2 n + 1 generated by Greiner vector fields, V ∈ L 1 loc ( Ω ) , k ∈ N , m ∈ R , 1 < p < 2 n + 2 k and m + p − 2 > 0. The better lower bound p ∗ for m + p is found and the nonexistence results are proved for p ∗ 6 m + p < 3.