{"title":"受控环境农业中作物的自主实时监测","authors":"S. Faryadi, Mohammadreza Davoodi, J. M. Velni","doi":"10.1115/dscc2019-9176","DOIUrl":null,"url":null,"abstract":"\n In this work, we develop a system that can be used for real-time monitoring of multiple important areas in controlled environment agriculture (and in particular greenhouses) using an autonomous ground vehicle (AGV). To model the greenhouse layout, as well as the tasks that should be accomplished by the AGV, we generate two weighted directed graphs. Based on those graphs, an algorithm is then proposed for finding the optimal (in the sense of traveled distance) trajectory of the vehicle with the goal of precisely monitoring important areas in the greenhouse. Furthermore, a data collection system and image processing algorithm is proposed and implemented so that the vehicle: (i) can capture images and detect changes that have occurred on the crops in real time, and (ii) construct (if needed) a map of the plant rows, when arriving at each one of the important areas. Based on this work, the images can either be stitched onboard the vehicle and then sent to a server or be sent directly to the server and then processed (stitched) there. Both simulation and experimental results are provided to demonstrate the effectiveness and performance of the proposed system.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":"25 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autonomous Real-Time Monitoring of Crops in Controlled Environment Agriculture\",\"authors\":\"S. Faryadi, Mohammadreza Davoodi, J. M. Velni\",\"doi\":\"10.1115/dscc2019-9176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this work, we develop a system that can be used for real-time monitoring of multiple important areas in controlled environment agriculture (and in particular greenhouses) using an autonomous ground vehicle (AGV). To model the greenhouse layout, as well as the tasks that should be accomplished by the AGV, we generate two weighted directed graphs. Based on those graphs, an algorithm is then proposed for finding the optimal (in the sense of traveled distance) trajectory of the vehicle with the goal of precisely monitoring important areas in the greenhouse. Furthermore, a data collection system and image processing algorithm is proposed and implemented so that the vehicle: (i) can capture images and detect changes that have occurred on the crops in real time, and (ii) construct (if needed) a map of the plant rows, when arriving at each one of the important areas. Based on this work, the images can either be stitched onboard the vehicle and then sent to a server or be sent directly to the server and then processed (stitched) there. Both simulation and experimental results are provided to demonstrate the effectiveness and performance of the proposed system.\",\"PeriodicalId\":41412,\"journal\":{\"name\":\"Mechatronic Systems and Control\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechatronic Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/dscc2019-9176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dscc2019-9176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Autonomous Real-Time Monitoring of Crops in Controlled Environment Agriculture
In this work, we develop a system that can be used for real-time monitoring of multiple important areas in controlled environment agriculture (and in particular greenhouses) using an autonomous ground vehicle (AGV). To model the greenhouse layout, as well as the tasks that should be accomplished by the AGV, we generate two weighted directed graphs. Based on those graphs, an algorithm is then proposed for finding the optimal (in the sense of traveled distance) trajectory of the vehicle with the goal of precisely monitoring important areas in the greenhouse. Furthermore, a data collection system and image processing algorithm is proposed and implemented so that the vehicle: (i) can capture images and detect changes that have occurred on the crops in real time, and (ii) construct (if needed) a map of the plant rows, when arriving at each one of the important areas. Based on this work, the images can either be stitched onboard the vehicle and then sent to a server or be sent directly to the server and then processed (stitched) there. Both simulation and experimental results are provided to demonstrate the effectiveness and performance of the proposed system.
期刊介绍:
This international journal publishes both theoretical and application-oriented papers on various aspects of mechatronic systems, modelling, design, conventional and intelligent control, and intelligent systems. Application areas of mechatronics may include robotics, transportation, energy systems, manufacturing, sensors, actuators, and automation. Techniques of artificial intelligence may include soft computing (fuzzy logic, neural networks, genetic algorithms/evolutionary computing, probabilistic methods, etc.). Techniques may cover frequency and time domains, linear and nonlinear systems, and deterministic and stochastic processes. Hybrid techniques of mechatronics that combine conventional and intelligent methods are also included. First published in 1972, this journal originated with an emphasis on conventional control systems and computer-based applications. Subsequently, with rapid advances in the field and in view of the widespread interest and application of soft computing in control systems, this latter aspect was integrated into the journal. Now the area of mechatronics is included as the main focus. A unique feature of the journal is its pioneering role in bridging the gap between conventional systems and intelligent systems, with an equal emphasis on theory and practical applications, including system modelling, design and instrumentation. It appears four times per year.