{"title":"基于元监督的深度人脸识别自适应标签噪声清除","authors":"Yaobin Zhang, Weihong Deng, Yaoyao Zhong, Jiani Hu, Dongchao Wen","doi":"10.1109/ICCV48922.2021.01479","DOIUrl":null,"url":null,"abstract":"The training of a deep face recognition system usually faces the interference of label noise in the training data. However, it is difficult to obtain a high-precision cleaning model to remove these noises. In this paper, we propose an adaptive label noise cleaning algorithm based on meta-learning for face recognition datasets, which can learn the distribution of the data to be cleaned and make automatic adjustments based on class differences. It first learns re-liable cleaning knowledge from well-labeled noisy data, then gradually transfers it to the target data with meta-supervision to improve performance. A threshold adapter module is also proposed to address the drift problem in transfer learning methods. Extensive experiments clean two noisy in-the-wild face recognition datasets and show the effectiveness of the proposed method to reach state-of-the-art performance on the IJB-C face recognition benchmark.","PeriodicalId":6820,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"22 1","pages":"15045-15055"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Adaptive Label Noise Cleaning with Meta-Supervision for Deep Face Recognition\",\"authors\":\"Yaobin Zhang, Weihong Deng, Yaoyao Zhong, Jiani Hu, Dongchao Wen\",\"doi\":\"10.1109/ICCV48922.2021.01479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The training of a deep face recognition system usually faces the interference of label noise in the training data. However, it is difficult to obtain a high-precision cleaning model to remove these noises. In this paper, we propose an adaptive label noise cleaning algorithm based on meta-learning for face recognition datasets, which can learn the distribution of the data to be cleaned and make automatic adjustments based on class differences. It first learns re-liable cleaning knowledge from well-labeled noisy data, then gradually transfers it to the target data with meta-supervision to improve performance. A threshold adapter module is also proposed to address the drift problem in transfer learning methods. Extensive experiments clean two noisy in-the-wild face recognition datasets and show the effectiveness of the proposed method to reach state-of-the-art performance on the IJB-C face recognition benchmark.\",\"PeriodicalId\":6820,\"journal\":{\"name\":\"2021 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"volume\":\"22 1\",\"pages\":\"15045-15055\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV48922.2021.01479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV48922.2021.01479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive Label Noise Cleaning with Meta-Supervision for Deep Face Recognition
The training of a deep face recognition system usually faces the interference of label noise in the training data. However, it is difficult to obtain a high-precision cleaning model to remove these noises. In this paper, we propose an adaptive label noise cleaning algorithm based on meta-learning for face recognition datasets, which can learn the distribution of the data to be cleaned and make automatic adjustments based on class differences. It first learns re-liable cleaning knowledge from well-labeled noisy data, then gradually transfers it to the target data with meta-supervision to improve performance. A threshold adapter module is also proposed to address the drift problem in transfer learning methods. Extensive experiments clean two noisy in-the-wild face recognition datasets and show the effectiveness of the proposed method to reach state-of-the-art performance on the IJB-C face recognition benchmark.