{"title":"随机正则图的谱隙","authors":"Amir Sarid","doi":"10.1002/rsa.21150","DOIUrl":null,"url":null,"abstract":"We bound the second eigenvalue of random d$$ d $$ ‐regular graphs, for a wide range of degrees d$$ d $$ , using a novel approach based on Fourier analysis. Let Gn,d$$ {G}_{n,d} $$ be a uniform random d$$ d $$ ‐regular graph on n$$ n $$ vertices, and λ(Gn,d)$$ \\lambda \\left({G}_{n,d}\\right) $$ be its second largest eigenvalue by absolute value. For some constant c>0$$ c>0 $$ and any degree d$$ d $$ with log10n≪d≤cn$$ {\\log}^{10}n\\ll d\\le cn $$ , we show that λ(Gn,d)=(2+o(1))d(n−d)/n$$ \\lambda \\left({G}_{n,d}\\right)=\\left(2+o(1)\\right)\\sqrt{d\\left(n-d\\right)/n} $$ asymptotically almost surely. Combined with earlier results that cover the case of sparse random graphs, this fully determines the asymptotic value of λ(Gn,d)$$ \\lambda \\left({G}_{n,d}\\right) $$ for all d≤cn$$ d\\le cn $$ . To achieve this, we introduce new methods that use mechanisms from discrete Fourier analysis, and combine them with existing tools and estimates on d$$ d $$ ‐regular random graphs—especially those of Liebenau and Wormald.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The spectral gap of random regular graphs\",\"authors\":\"Amir Sarid\",\"doi\":\"10.1002/rsa.21150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We bound the second eigenvalue of random d$$ d $$ ‐regular graphs, for a wide range of degrees d$$ d $$ , using a novel approach based on Fourier analysis. Let Gn,d$$ {G}_{n,d} $$ be a uniform random d$$ d $$ ‐regular graph on n$$ n $$ vertices, and λ(Gn,d)$$ \\\\lambda \\\\left({G}_{n,d}\\\\right) $$ be its second largest eigenvalue by absolute value. For some constant c>0$$ c>0 $$ and any degree d$$ d $$ with log10n≪d≤cn$$ {\\\\log}^{10}n\\\\ll d\\\\le cn $$ , we show that λ(Gn,d)=(2+o(1))d(n−d)/n$$ \\\\lambda \\\\left({G}_{n,d}\\\\right)=\\\\left(2+o(1)\\\\right)\\\\sqrt{d\\\\left(n-d\\\\right)/n} $$ asymptotically almost surely. Combined with earlier results that cover the case of sparse random graphs, this fully determines the asymptotic value of λ(Gn,d)$$ \\\\lambda \\\\left({G}_{n,d}\\\\right) $$ for all d≤cn$$ d\\\\le cn $$ . To achieve this, we introduce new methods that use mechanisms from discrete Fourier analysis, and combine them with existing tools and estimates on d$$ d $$ ‐regular random graphs—especially those of Liebenau and Wormald.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/rsa.21150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/rsa.21150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
摘要
我们使用一种基于傅里叶分析的新方法,对随机d $$ d $$‐正则图的第二个特征值进行了绑定,用于大范围的d $$ d $$度。设Gn,d $$ {G}_{n,d} $$为n $$ n $$个顶点上的一致随机图形$$ d $$‐正则图,λ(Gn,d) $$ \lambda \left({G}_{n,d}\right) $$为其绝对值第二大特征值。对于某常数c>0 $$ c>0 $$和任意阶d $$ d $$且log10n≪d≤cn $$ {\log}^{10}n\ll d\le cn $$,我们几乎可以肯定地证明λ(Gn,d)=(2+o(1))d(n−d)/n $$ \lambda \left({G}_{n,d}\right)=\left(2+o(1)\right)\sqrt{d\left(n-d\right)/n} $$。结合先前涵盖稀疏随机图情况的结果,这完全确定了对于所有d≤cn $$ d\le cn $$ λ(Gn,d) $$ \lambda \left({G}_{n,d}\right) $$的渐近值。为了实现这一目标,我们引入了使用离散傅立叶分析机制的新方法,并将它们与d $$ d $$ -正则随机图(特别是Liebenau和Wormald的随机图)上的现有工具和估计相结合。
We bound the second eigenvalue of random d$$ d $$ ‐regular graphs, for a wide range of degrees d$$ d $$ , using a novel approach based on Fourier analysis. Let Gn,d$$ {G}_{n,d} $$ be a uniform random d$$ d $$ ‐regular graph on n$$ n $$ vertices, and λ(Gn,d)$$ \lambda \left({G}_{n,d}\right) $$ be its second largest eigenvalue by absolute value. For some constant c>0$$ c>0 $$ and any degree d$$ d $$ with log10n≪d≤cn$$ {\log}^{10}n\ll d\le cn $$ , we show that λ(Gn,d)=(2+o(1))d(n−d)/n$$ \lambda \left({G}_{n,d}\right)=\left(2+o(1)\right)\sqrt{d\left(n-d\right)/n} $$ asymptotically almost surely. Combined with earlier results that cover the case of sparse random graphs, this fully determines the asymptotic value of λ(Gn,d)$$ \lambda \left({G}_{n,d}\right) $$ for all d≤cn$$ d\le cn $$ . To achieve this, we introduce new methods that use mechanisms from discrete Fourier analysis, and combine them with existing tools and estimates on d$$ d $$ ‐regular random graphs—especially those of Liebenau and Wormald.