随机Petri网时间故障检测与隔离的移动平均控制图

Sara Rachidi, E. Leclercq, Yoann Pigné, D. Lefebvre
{"title":"随机Petri网时间故障检测与隔离的移动平均控制图","authors":"Sara Rachidi, E. Leclercq, Yoann Pigné, D. Lefebvre","doi":"10.1109/ETFA.2018.8502633","DOIUrl":null,"url":null,"abstract":"This paper deals with problems of detection and isolation of temporal faults in timed stochastic discrete event systems. Partially labeled timed Petri nets are used to model the considered systems. Temporal faults corresponding to significant variations of the support of the probability density function (pdf) are considered. A pdf represents the firing duration of each transition. A Moving Average control chart (also known as a Moving Mean chart) is applied in order to detect the variation of mean duration. The advantages of the proposed analysis are to detect variations in time series when parameters vary slowly and to isolate the faults thanks to the signature table.","PeriodicalId":6566,"journal":{"name":"2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA)","volume":"44 1","pages":"493-498"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Moving Average control chart for the detection and isolation of temporal faults in stochastic Petri nets\",\"authors\":\"Sara Rachidi, E. Leclercq, Yoann Pigné, D. Lefebvre\",\"doi\":\"10.1109/ETFA.2018.8502633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with problems of detection and isolation of temporal faults in timed stochastic discrete event systems. Partially labeled timed Petri nets are used to model the considered systems. Temporal faults corresponding to significant variations of the support of the probability density function (pdf) are considered. A pdf represents the firing duration of each transition. A Moving Average control chart (also known as a Moving Mean chart) is applied in order to detect the variation of mean duration. The advantages of the proposed analysis are to detect variations in time series when parameters vary slowly and to isolate the faults thanks to the signature table.\",\"PeriodicalId\":6566,\"journal\":{\"name\":\"2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA)\",\"volume\":\"44 1\",\"pages\":\"493-498\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETFA.2018.8502633\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2018.8502633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了定时随机离散事件系统中时间故障的检测与隔离问题。使用部分标记的定时Petri网对所考虑的系统进行建模。考虑了概率密度函数(pdf)支持度显著变化所对应的时间断层。pdf表示每个转换的触发持续时间。移动平均控制图(也称为移动平均图)用于检测平均持续时间的变化。该分析方法的优点是在参数变化较慢的情况下可以检测到时间序列的变化,并利用特征表隔离故障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moving Average control chart for the detection and isolation of temporal faults in stochastic Petri nets
This paper deals with problems of detection and isolation of temporal faults in timed stochastic discrete event systems. Partially labeled timed Petri nets are used to model the considered systems. Temporal faults corresponding to significant variations of the support of the probability density function (pdf) are considered. A pdf represents the firing duration of each transition. A Moving Average control chart (also known as a Moving Mean chart) is applied in order to detect the variation of mean duration. The advantages of the proposed analysis are to detect variations in time series when parameters vary slowly and to isolate the faults thanks to the signature table.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信