{"title":"反δ掺杂改进InP太阳能电池","authors":"J. Piprek, K. W. Boer","doi":"10.1109/WCPEC.1994.520657","DOIUrl":null,"url":null,"abstract":"Recombination loss mechanisms in InP homojunction solar cells are analyzed using numerical modeling. To reduce the junction leakage current, it is proposed to introduce a thin undoped layer with low recombination center density near the pn-junction. This inverse delta-doping is found to be most beneficial in low efficiency p/sup +/n-InP cells, improving the open circuit voltage by 50 mV, the fill factor by 0.09, and the efficiency by 2 percentage points.","PeriodicalId":20517,"journal":{"name":"Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC)","volume":"22 1","pages":"1818-1821 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"InP solar cell improvement by inverse delta-doping\",\"authors\":\"J. Piprek, K. W. Boer\",\"doi\":\"10.1109/WCPEC.1994.520657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recombination loss mechanisms in InP homojunction solar cells are analyzed using numerical modeling. To reduce the junction leakage current, it is proposed to introduce a thin undoped layer with low recombination center density near the pn-junction. This inverse delta-doping is found to be most beneficial in low efficiency p/sup +/n-InP cells, improving the open circuit voltage by 50 mV, the fill factor by 0.09, and the efficiency by 2 percentage points.\",\"PeriodicalId\":20517,\"journal\":{\"name\":\"Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC)\",\"volume\":\"22 1\",\"pages\":\"1818-1821 vol.2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCPEC.1994.520657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCPEC.1994.520657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
InP solar cell improvement by inverse delta-doping
Recombination loss mechanisms in InP homojunction solar cells are analyzed using numerical modeling. To reduce the junction leakage current, it is proposed to introduce a thin undoped layer with low recombination center density near the pn-junction. This inverse delta-doping is found to be most beneficial in low efficiency p/sup +/n-InP cells, improving the open circuit voltage by 50 mV, the fill factor by 0.09, and the efficiency by 2 percentage points.